
1

Real Time System
实时系统

College of Information Science & Engineering
Qingxu Deng

信息学院：邓庆绪

2009年3月2日
dengqx@mail.neu.edu.cn

Tel: 83690609
Add: Main Building, Room404

计算机、通信研究生专业理论课程

mailto:dengqx@mail.neu.edu.cn�

2

Should you take this course?
 You will not learn how to be an embedded software

engineer in this course!
 Research-oriented, mostly theory, not programming
 May be useful if you are doing research in these areas:

– Real-time embedded systems
– Control theory
– Systems and networking

» Operating systems, wireless sensor networks…
– Software engineering
– Ubiquitous/mobile computing

3

Grading Scheme
 Participation (10%): Participation is based on questions,

answers, and active participation in class discussions.
 Class Presentation of papers (30%): Evaluation is

based on presentation clarity, technical understanding,
identification of contributions and performance in the
Q&A.

 Project Proposal (5%)
 Project Presentation (15%)
 Project Report (40%)
 No exams, no homework (except reading and

presentation assignments)

4

The Project
 Proposal due May 20.
 Groups of 1-3 students
 In-class presentation at end of semester
 Cannot be

 a survey paper

 SMOP (simple matter of programming) with no research
content

 Can be
 Small, incremental improvement over existing work

 Negative results OK

5

During Class (bonus)
 Questions are welcome.
 Insightful questions/answers/discussions will

enhance your class participation score.
 Missing class will hurt your participation score

 Unless you have a good reason and inform me
beforehand

6

Real-Time System
Contents

 Chapter 1: Brief Introduction（实时系统的基本概念）

 Chapter 2: The Calculation of WCET（最坏执行时间计算 ）

 Chapter 3: Scheduling Algorithm （常见调度算法 ）

 Chapter 4: Priority scheduling (优先级驱动调度算法)
 Chapter 5: Resource Sharing in Real Time Scheduling(实时调度中

的资源共享)
 Chapter 6: Scheduling Algorithm for Multiprocessor(多处理器实时调

度算法)
 Chapter 7: Formal Methods Used in Real Time System (实时系统的

形式化验证方法)
 Chapter 8: Research on RTOS (实时操作系统的各种研究方法)
 Chapter 9: Case study (案例)

7

Chapter 1: Brief introduction

 What is a real time System
 Some examples of real time system
 Hard real time vs Soft real time
 Concept and parameters about real time system
 Misconception about real time system
 Challenge about real time system research
 Reference about this chapter

8

What is a Real-Time System?
 A real-time system is one in which the correctness of the

system depends not only on the logical result of
computation, but also on the time at which the results
are generated （For more detail see Kang G. Shin
reference ）

 J. Stankovic, 1988

 Not necessarily “real-fast”!
 Predictability is the key

 There was a man who drowned crossing a stream with
an average depth of six inches
 J. Stankovic

9

What is a Real-Time System?

The moment for a bird catching fish
翠鸟潜入水底捕捉小鱼瞬间

捉到鱼后，翠鸟会快速冲出水面。

10

What is a Real-Time System?

11

What is a Real-Time System?
factory

automation

military
systems

spacecraft

Missile & anti-missile

12

What is a Real-Time System?

13

Hard or Soft?
 A real time system can be defined as Hard or

Soft real time system

14

Hard or Soft?
 硬实时系统是指其时限必须要满足的系统,如不满足将

会引起灾难性的后果.譬如发电厂中的汽轮机进汽阀门

的控制，核电站控制系统，必须在规定时间内正确控
制,否则将会引起灾难性的后果

 而“软实时系统”在截止期限被错过的情况下，只造
成系统性能下降而不会带来严重恶果（网络浏览，媒
体播放）

0 deadline Time

Performance

1 Soft Real Time System

Hard Real Time System

15

Concept and parameters
about real time system

 Task
 spark control

 crankshaft sensing

 fuel/air mixture

 oxygen sensor

 Kalman filter – control algorithm

Engine Control System

16

Task, Job and Process
 Task: the term mostly used in real time

system (Scheduling system) theory,
also commonly used in practice. A task
can have many instances for repeated
ones, each call its Job. While its
implementation through a process .

 Job: an instance of a task
 Process: A process is a unique execution

of a program.

17

Process
 The concept of concurrent processes reflects the

intuition about the functionality of real time systems.
 Processes help us manage timing complexity:

 multiple rates
 multimedia

 automotive

 asynchronous input
 user interfaces

 communication systems

18

Task classes
 Task classes

 Period task:

 Aperiod task: classified by the predictability
 Sporadic task:

 Critical
by the consequences of not
being executed on time

 Noncritical

19

Task classes
 Periodic task: There are many tasks in real time

systems that are done repetitively. For example,
the aircraft control system should monitor the
speed , altitude, and attitude every 100ms. This
sensor information will be used by periodic tasks.
Called Periodic task

 Aperiodic task: in contrast, many tasks that
occur only occasionally. For instance, when the
pilot wishes to execute a turn, a large number of
subtasks associated with that action are set off.
By the very nature, aperiodic tasks cannot be
predicted. Called aperiodic task

20

Task classes
 Sporadic task: For some aperiodic tasks, even

it is not predictable, but sufficient computing
power must be held in reserve to execute them
in a timely fashion. Aperiodic task with a
bounded inter-arrival time are called sporadic
tasks.

21

Task classes
 Critical tasks: Critical task are those whos timely execution is

critical; if deadline are missed, catastrophes occur. For
example, the aircraft control system, nuclear control system,
life-support systems.

 Noncritical tasks: Noncritical real time (or soft real time) tasks
are ,as the name implies, not critical to the application.
However, they do deal with time-varying data and hence they
are useless if not completed within a deadline. The goal in
scheduling these tasks is thus to maximize the percentage of
jobs successfully executed within their deadline.

Classified by the consequences of not being executed on time

22

parameters about a task
 Arrival time or release time is the time at which a

task becomes ready for execution.
 Computation time is the time necessary to the

processor for executing the task without
interruption.

 Deadline is the time at which a task should be
completed.

 Start time is the time at which a task starts its
execution.

 Finishing time is the time at which a task finishes
its execution.

23

拖延（超出）时间

松弛时间

parameters about a task

24

 Response time is the time taken to finish a task.
Ri=Fi-Ri. Some time, it is the addition of the time
that was preempted by higher priority task and the
Computation time Ri=Ii+Ci.

 Utilization is a parameter to calculate the
proportion of a task to occupy the processor.
Ui=Ci/Di or Ui=Ci/Ti

parameters about a task

25

An example

26

Misconceptions I
 There is no science in real-time system design.

 True 20 years ago, but as complexity grows, more and
more theory is needed.
 Real-time scheduling, formal verification, etc.

 Advances in hardware (Moore’s Law) will take care
of real-time requirements.
 Other constraints (power, cost, reliability…) preclude

using the latest and fastest chips in RTE systems

 Worst-case timing is important, not average case
 Modern CPU features, like cache, pipeline, super-scalar make

worst-case guarantees difficult.

27

Misconceptions II

 Real-time computing is equivalent to fast computing.
 Average-case vs. worst-case

 A man was drawn in a average 1.2m depth lake!
 Real-time programming is assembly coding, priority

interrupt programming, and device driver writing.
 Assembly is OUT, except in high-performance DSP

programming

 Low-level programming unavoidable, but only a small
portion.

28

Misconceptions III
 Real-time-systems research is performance

engineering.
 And a lot more!

 Software engineering, distributed systems, programming
languages, formal methods….

 The problems in real-time-system design have
all been solved in other areas of computer
science or operations research.
 Queuing theory: average, not worst-case behavior

 OR: one-shot, not recurring, periodic tasks.

29

Misconceptions IV
 It is not meaningful to talk about absolute

guarantees, because we cannot guarantee that
the hardware will not fail and the software is bug
free
 If you get on a plane, you have a 0.00001%

probability of dying in a crash. It’s a LOT better than a
1% probability!

 Real-time systems function in a static
environment.
 More and more dynamic, as complexity grows.

30

Research Challenges I
 Specification and verification.

 Incorporate TIME

 Lies between synchronous and asynchronous systems

 We need quantitative analysis (deadlines, repetition rates) rather
than the qualitative analysis (eventual satisfaction) that is
typically handled by current verification techniques. Multicore or
multiprocessor lead to much complicated problems!

 Tackle state-space explosion.

 Real-time scheduling theory
 Well-studied field of research

 Multicore or Multiprocessor bring in too many challenges

31

Research Challenges II
 Real-Time Operating Systems

 Hundreds of them
Is there one support multicore?

 Examples:
 For hard real-time: VxWorks from WindRiver
 For soft real-time: Windows CE from Microsoft
 Many others for specialized application domains

 Real-time programming languages and design methodology.
 C/C++, Java (real-time garbage collection), Ada (dead?), assembly
 Support for the management of time.
 Schedulability check.
 Reusable real-time software modules.
 Support for distributed programs and fault tolerance.

Is there one support multicore?

32

Research Challenges III

 Distributed real-time databases
 Global serialization criteria need to be relaxed
 Real-time concurrency control

 Artificial intelligence
 AI relies on search, which is often NP-complete
 Tradeoff between accuracy of results and timeliness

 Fault tolerance
 Error/exception handling must consider timing

constraints

33

Research Challenges IV
 Real-time-system

architectures
 More and more distributed

 Distributed systems issues

 New architecture: Multicore or
reconfigurable system

34

Research Challenges V

 Real-time communications
 End-to-end timing constraints

 Dynamic routing solutions

 Network buffer management

 Fault-tolerant communications.

 Network scheduling that can be combined
with processor scheduling to provide
system-level scheduling solutions.

 NOC for multicore

35

Running on CPU

Placer

Scheduler

Loader

Reconfigurable Area

T1

T2

T3

T1

Execution queue

T2T3

Hardware Task
Storage

……Tasks arrival queue T4T5T6

Hybrid system os
 HW Task Manager：

硬件任务管理

 Scheduler:
任务调度器

 Placer：
任务放置及FPGA资源管
理

 Loader：
硬件任务放置器

 Others:
辅助数据结构

Presenter
Presentation Notes
动态替换硬件逻辑的功能提供了以进程方式对其进行管理的可能，由于硬件

36

Book
《Real-time Systems》，Jane W.S.

Liu，高等教育出版社，2002年
《Real-time Systems》，C.M.Krishna

and Kang G.Shin，清华大学出版社，
2004年
实时系统 (美)Jane W.S. Liu著 姬孟
洛 ... [等] 译 高等教育出版社 , 2003

Reference

http://www.huachu.com.cn/itbook/booklist.asp?zuoz=C%2EM%2EKrishna�
http://www.huachu.com.cn/itbook/booklist.asp?zuoz=Kang+G%2EShin�

37

 paper
 C.L.Liu, Scheduling Algorithms for Multiprogramming in a Hard-Real-Time

Environment

 J. A. Stankovic, UMass, "Misconceptions about real-time computing: a serious
problem for next-generation systems, IEEE Computer, Vol 21, Issue 10, Oct 1998

 Liu Sha, etc. Real time scheduling theory: A historical perspective, Real time
system 28,101-155, 2004

 Nan Guan, Wang Yi, Zonghua Gu, Qingxu Deng and Ge Yu, Improved
Schedulability Analysis of Non-preemptive Scheduling on Multiprocessor
Platforms, The 29th IEEE Real-Time Systems Symposium （RTSS2008）
Barcelona, Spain.

 Nan Guan, Qingxu Deng, Zonghua Gu, Wenyao Xu, Ge Yu. “Schedulability
Analysis of Preemptive and Non-preemptive EDF on Partially Runtime
Reconfigurable FPGAs”, ACM Transactions on Design Automation of Electronic
Systems (TODAES). (2008 Vol.13, No.4 Article 56:1-43)

Reference

38

 Proceeding
 AREA: Hardware and Architecture
 Rank 1:
 ASPLOS: Architectural Support for Prog Lang and OS
 ISCA: ACM/IEEE Symp on Computer Architecture
 ICCAD: Intl Conf on Computer-Aided Design
 DAC: Design Automation Conf
 Rank 2:
 ISSS: International Symposium on System Synthesis
 DATE: IEEE/ACM Design, Automation & Test in Europe

Conference
 Rank 3:
 ICA3PP: Algs and Archs for Parall Proc
 Unranked:
 International Symposium on System Synthesis
 International Symposium on Computer Design
 Asia Pacific Design Automation Conference

Reference

39

 Proceeding
 AREA: Programming Languages and Software Engineering
 Rank 1:
 FM/FME: Formal Methods, World Congress/Europe
 CAV: Computer Aided Verification
 AREA: Algorithms and Theory
 Rank 1:
 SPAA: ACM Symp on Parallel Algorithms and

Architectures
 Rank 2:
 EMSOFT

Reference

40

41

	Real Time System �实时系统
	Should you take this course?
	Grading Scheme
	The Project
	During Class (bonus)
	Real-Time System� Contents
	Chapter 1: Brief introduction
	What is a Real-Time System?
	What is a Real-Time System?
	What is a Real-Time System?
	What is a Real-Time System?
	What is a Real-Time System?
	Hard or Soft?
	Hard or Soft?
	Concept and parameters about real time system
	Task, Job and Process
	Process
	Task classes
	Task classes
	Task classes
	Task classes
	parameters about a task
	parameters about a task
	parameters about a task
	An example
	Misconceptions I
	Misconceptions II
	Misconceptions III
	Misconceptions IV
	Research Challenges I
	Research Challenges II
	Research Challenges III
	Research Challenges IV
	Research Challenges V
	Hybrid system os
	Reference
	Reference
	Reference
	Reference
	Slide Number 40
	Slide Number 41

