(s -
ﬁﬁﬁﬁﬁﬁ

W B 15 BFH A & A FEAEIRAE

Chapter3- Real Time Scheduling

College of Information Science & Engineering

ﬁ |||||| nonn

= %?F‘m XB PR 2
2009FEx Ax H

denggx@mail.neu.edu.cn
Tel: 83690609
Add: Main Building, Room404 _

& ERNEsTRSE

CONLEGE OF PROMANICH SCHMCE AND BGnEieec)



The Scheduling Problem

What does the Scheduler do? And what is the
most concern about scheduling?

Deciding the order and/or the execution time of
a set of tasks with certain known characteristics
(periodicity, duration) on a limited set of
processing units. These units have a given
capability (capacity, processing speed) and are
subject to a set of constraints on the completion
time of each task and on the use of the
processing units.

CONLEGE OF PROMANICH SCHMCE AND BGnEieec)

& ERNEsTRSE



Error Control signal Output

e(t) u(t) y(t)
" » controller +  plant .
Implementation
\/ Viadigital controller
Error __| - _ |, Control signal
e(t) A/D converter Digital computer D/A converter u(t)
e(kT) u(kT)

Feedback Control Systems

& ERNEsTRSE

CONLEGE OF PROMANICH SCHMCE AND BGnEieec)



(s -
ﬁﬁﬁﬁﬁﬁ

he Motivation for Scheduling

O In the old days, each control task runs on a
dedicated CPU

m No RTOS, bare metal

m No need for scheduling

m Just make sure that task execution time < deadline
O Now, multiple control tasks share one CPU

m  Multitasking RTOS

m Need scheduling to make sure all tasks meet
deadlines :

CONLEGE OF PROMANICH SCHMCE ARD BRGNS,

& ERRESIRER



O Task: TN

m spark control j \
m crankshaft sensing |
. engine
m fuel/air mixture /) controller
m OXygen sensor '|
|
m Kalman filter — control algorithm Y

CONLEGE OF PROMANICH SCHMCE ARD BRGNS,

6 ERRESIRER



Schedule and Timing

O A schedule is said to be feasible, if all
task can be completed according to a
set of specified constraints.

O A set of tasks is said to be schedulable,
if there exists at least one algorithm that
can produce a feasible schedule.

& ERNEsTRSE

CONLEGE OF PROMANICH SCHMCE AND BGnEieec)




Review some definition

O Arrival time or release time is the time at which
a task becomes ready for execution.

O Computation time is the time necessary to the
processor for executing the task without
iInterruption.

O Deadline is the time at which a task should be
completed.

O Start time is the time at which a task starts its
execution.

O Finishing time is the time at which a task
finishes its execution.

CONLEGE OF PROMANICH SCHMCE ARD



Review some definition

O Lateness (Li): Li=fi- di, represents the delay of a
task completion with respect to its deadline;
Note: if a task completed before its deadline, its
lateness is negative.

O Tardiness or exceeding time (Ei):
Ei=max(0,Li), is the time a task still active after
its deadline.

O Laxity or Slack time (Xi): Xi=fi-ai-Ci Iis the
maximum time that a task can be delayed (or

preempted by other task) on its activation to
complete within its deadline.

CONLEGE OF PROMANICH SCHMCE AND BGnEieec)

& ERNEsTRSE



e

>

-

Average response time: t, == ' (fi—1)

Total completion time: f, =max(f;)—min(r;)
I I
. L S (firi)
Weighted sum of completion time: ; -z

w M
2 W
. _ i=1
Maximum lateness: Lo = max(f, —d,)

I

H
Maximum number of late tasks: Ny, = D miss(f;)
i=1

otherwise
& EERE5TREE

CONLEGE OF PROMANICH SCHMCE AND BGnEieec)

0 1if f;<d,
miss()@-):{] it Jisd;




Hard or Soft?
O A real time system can be defined as Hard or

Soft real time system

= Hard: A real-time task is said to be hard, if missing its
deadline may cause catastrophic consequences on the
environment under control. Examples are sensory data
acquisition, detection of critical conditions, actuator servoing.

= Soft: A real-time task is called soft, if meeting its deadline is
desirable for performance reasons, but missing its deadline
does not cause serious damage to the environment and does
not jeopardize correct system behavior. Examples are
command interpreter of the user interface, displaying

messages on the screen.

6 ERNEsTRSE

CONLEGE OF PROMANICH SCHMCE AND BGnEieec)




» In (a), the maximum lateness is minimized, but all tasks
miss their deadlines.

» In (D), the maximal lateness is larger, but only one task

misses Its deadline.

dl d2 3 d4 ds
Lisl L2=12 Ll |Last | L5=2
| l oy |
() \ Iy I, 13 )4 )5 —l
T I T T T - T |'-""'"|‘—"'"
L] 4 L ] e | 4 1 | F. 1} 4 o t
- e
Ligga ® L1 =3
dl d2 d3 d4 ds
ll.l—ﬂ ll,iﬁ-i j'l.h-ﬁ L4=-3 1:&-4
¥
ibj 412 13 Ja Js 1
I T I T | T -

CONLEGE OF PROMANICH SCHMCE AND BGnEieec)




approaches

O Static cyclic scheduling
m All task invocation times are computed offline and stored in a table
®  Runtime dispatch is a simple table lookup
O Fixed priority scheduling = our focus
m Each task is assigned a fixed priority
m  Runtime dispatch is priority-based
m  Preemptive or non-preemptive
O Dynamic priority scheduling
m Task priorities are assigned dynamically at runtime
m E.g., earliest deadline first (EDF)

& ERNEsTRSE

CONLEGE OF PROMANICH SCHMCE AND BGnEieec)




#y L
ﬁﬁﬁﬁﬁﬁ

O

Cyclic Executive Scheduling

Execution timeline is an infinite sequence of
hyper periods.

The same schedule is executed once during
each hyper period.

Schedule is designed offline and stored in a table.
Runtime task dispatch is simple table lookup.

interript p0y|r1g

4! i
Timer ‘ni" ]\ interfaces
Ry CPU 4—*}———" to sensor/

@ — ]// actuator _

& ERNEsTRSE

CONLEGE OF PROMANICH SCHMCE AND BGnEieec)




O Pros:
m Predictability

m Low runtime overhead
O Cons:

m Task table can get very large if task periods are
relatively prime

m  Maintenance nightmare
O Not widely used

m Except in certain
m safety-critical systems

CONLEGE OF PROMANICH SCHMCE ARD BRGNS,

& ERRESIRER



Triggered) Scheduler
» Timer interrupts regularly with period P.
» All processes have same period P.

T,| T, |15 T, T, [Ts .| T, [T3
)

P

» Properties:
= |ater processes (T-, T;) have unpredictable starting times

= no problem with communication between processes or use of
common resources, as there is a static ordering

= Y WCET(T}) < P

(k)

BENESTRSR

CONLEGE OF PROMANICH SCHMCE AND BGnEieec)



mair:
determine table of processes (k, Tik)), for k=0,1,..,m-1;
1=0; set the Cimer to explre at 1nitial phase t(0);

whille (true) sleepi);
S— set CPU to low poOwer mnde; IL

T returns after interrupt
Timer Interrupt: k T (k]
1=1+1 H 0 T
1
set the timer to explre at 1*P + £{0); 1 T
for (k=0,..,m-1){ execute process T(k); |} £
return; S 2 T,
. R
for example using a 4 T
function pointer in C; =
task returns afier finishing. m="5

CONLEGE OF PROMANICH SCHMCE AND BGnEieec)

6 EANS TR




“TT Cyclic Executive Scheduler
» Processes may have different periods.
» The period P is partitioned into frames of length f.

WA R YR N NN
6 8

0 2 4 10 12 14 16 18 20

=
- -

— P

» problem, if there are long processes; they need to be
partitioned into a sequence of small processes; this is
TERRIBLE, as local state must be extracted and stored |
globally: =

6 P —

CONLEGE OF PROMANICH SCHMCE AND BGnEieec)



eneric Time-Triggered Scheduler

In an entirely time-triggered system, the temporal control structure

of all tasks is established a priori by off-line support-tools. This

temporal control structure is encoded in a Task-Descriptor List
(TDL) that contains the cyclic schedule for all activities of the node.

This schedule considers the required precedence and mutual
exclusion relationships among the tasks such that an explicit

coordination of the tasks by the operating system at run time is not

necessary. ..

The dispatcher is activated by the synchronized clock tick. It looks at
the TDL, and then performs the action that has been planned for

this instant [Kopetz].  Time

in
LY

3k
Swiss Federal e
Institume of Technolo 2-23 | o

Ation

start Tl
send M3
stop T'L

siart 12

wWCED
12

M)

send M2

(1

-,__ ;

Dhspatcher




| piifi'ed Time-Triggered Schedule

main:

determine static schedule (tik), Tik)), feor k=0,1,...n-1;
det ermine periocd of the zchedule P;
get i=k=0 initially; set the timer to expire at t(0);

while (true) sleep();

Rﬁ“‘“ﬂ set CPU to low power mode;

——

. k tik) | T(k)
Timer Interrupt: returns after interrupt
k old := k; 0 0 Ty
1 :=1+1l; k := 1 mod n; 1 3 T,
get the timer to expire at |_J'_,fn_ * P o+ tik); 5 - T
exeoute proceaaxTE]{_caldj 7 - - ml
return; \ _ - = 3
for example using a 4 12 T.
runction polnter In <,
process returns after finishing. n=5, P = 16

possible extensions: execute aperiodic background tasks if
system is idle; check for task overruns (WCET too long)

6 BRNESTRER

CONLEGE OF PROMANICH SCHMCE AND BGnEieec)



OO O

OO O

Summary of TT Scheduler
deterministic schedule; conceptually simple (static table);

relatively easy to validate, test and certify
no problems in using shared resources

external communication only via polling
Inflexible as no adaptation to environment

serious problems if there are long processes

Extensions:

m allow interrupts (shared resources ? WCET ?) — be careful!!
m allow preemptable background processes

allow for aperiodic jobs using slack stealing

& ERNEsTRSE

CONLEGE OF PROMANICH SCHMCE AND BGnEieec)




Non-Preemptive Scheuiing
O Principle:

m To each event, there is associated a corresponding process that
will be executed.

m Events are emitted by (a) external interrupts and (b) by processes
themselves.

m Events are collected in a queue; depending on the queuing
discipline, an event is chosen for running.

m  Processes can not be interrupted.
O Extensions:

m A background process can run (and preempted!) if the event queue
Is empty.

m Timed events enter the queue only after a time interval elapsed.
This enables periodic instantiations for example.

& ERNEsTRSE

CONLEGE OF PROMANICH SCHMCE AND BGnEieec)




& ERNEsTRSE

CONLEGE OF PROMANICH SCHMCE AND BGnEieec)




