
Model-Checking

Acknowledgment

Formal Verification

Formal verification means to apply mathematical
arguments to prove the correctness of systems

Systems have bugs
 Formal verification aims to find and correct such bugs

Why?

Computer systems are getting more complex and
pervasive, and bugs are unacceptable (mission
control, medical devices) or prohibitively expensive
(Pentium FDIV, Buffer overruns)
In hardware, 70% of design effort goes into
verification, with twice as many verification engineers
than RTL designers
In software, the numbers are similar

What kind of bugs?

Concurrency errors
Scenario: You are designing a
 100K gate ASIC: perhaps 100 concurrent modules
 Flight control system: dozens of concurrent processes, on multiple

CPUs
 Networked embedded system: tens of thousands of motes

Under test, the system fails once in three days
 The error is not reproducible
 You cannot collect enough real-time data to find the bug

Concurrency Error
 Events x and y occur concurrently (say) every 1010 cycles
 The designer did not realize events x and y could interact concurrently

Concurrency Bugs

x := 0 init
x := x + 1 | | x := x - 1

post x = 1 !

This one is easy!
This can be prevented by using semaphores (locks)
Other bugs are not so simple
 Routing loop in AODV implementations
 Gigamax cache coherence protocol: required 13 messages in

sequence

What kind of bugs?

Sequential programs
Scenario: Your OS kernel crashes with mangled
memory state
Under test, the system fails once in three days
 The error is not reproducible
 You cannot collect enough real-time data to find the bug

Bug: The stack overflowed, and wrote parts of memory
Bug: Certain data structure invariants were not met

What is formal verification?

Build a mathematical model of the system:
 what are possible behaviors?

Write correctness requirements in a specification language:
 what are desirable behaviors?

Analysis: (Automatically) check that model satisfies specification

Formal) Correctness claim is a precise mathematical statement

Verification) Analysis either proves or disproves the correctness
claim

Presenter
Presentation Notes
Check => proof system to decide when a property holds

Why study verification?

General approach to improving reliability of systems
 Hardware, systems software, embedded control systems, network

protocols, networked embedded systems, …

Increasing industrial interest
 All major hardware companies employ in-house verification groups: Intel,

Motorola, AMD, Lucent, IBM, Fujitsu, …
 Tools from major EDA players: Synopsys Magellan, FormalCheck
 Bunch of start-ups: Calypto, Jasper, 0-In

 SLAM project at Microsoft http://research.microsoft.com/slam
 Coverity

http://research.microsoft.com/slam�

Where is Verification Used?
Hardware verification
 Success in verifying microprocessor designs, ISAs, cache

coherence protocols
 Fits in design flow
 Tools: SMV, nuSMV, VIS, Mocha, FormalCheck

Protocol verification
 Network/Communications protocol implementations
 Tools: Spin

Software verification
 Apply directly to source code (e.g., device drivers)
 Tools: SLAM, Blast, Magic

Embedded and real time systems
 Tools: Uppaal, HyTech, Kronos, Charon

Presenter
Presentation Notes
Used effectively as a debugging tool

Formal Methods: Solution and Benefits

Formal Methods: Potential Problems

FM Techniques

Simulation and Testing

Theorem Proving

Model-Checking

Industrial Success of MC

Model Checking
Model checking is an automatic verification
technique for
finite state concurrent systems.
 • Developed independently by Clarke and Emerson and

by Queille and Sifakis in early 1980’s.

• Specifications are written in propositional
temporal logic.
• Verification procedure is an exhaustive search
of the state space of the design.

Model Checking is a formal verification technique
 analysis of complex reactive systems: hardware designs,

communication protocols, embedded control systems for
railways/avionics

Industrial Success of Model Checking
 From academics to industry in a decade
 Easier to integrate within industrial development cycle:

 – input from practical design languages (e.g. VHDL, SDL, StateCharts);
 – expressiveness limited but often sufficient in practice.

Does not require deep training (“push-button” technology).
Powerful debugging capabilities:
 – detect costly problems in early developmemt stages (cfr. Pentium

bug);
 – exhaustive, thus effective (often bugs are also in scaled-down

problems).
 – provides counterexamples (directs the designer to the problem).

Model Checking in a nutshell
Reactive systems represented as a finite state
models
 (in this course, Kripke models).

System behaviors represented as (possibly) infinite
sequences of states.
Requirements represented as formulae in temporal
logics.
“The system satisfies the requirement” represented
as truth of the formula in the Kripke model.
Efficient model checking algorithms based on
exhaustive exploration of the Kripke model.

What is a Model Checker

What is a Model Checker

We will not discuss
A deep theoretical background. We will focus on
practice.
Advanced model checking techniques:
 – abstraction;
 – compositional, assume-guarantee reasoning;
 – symmetry reduction;
 – approximation techniques (e.g. directed to bug

hunting);
 – model transformation techniques (e.g. minimization wrt

to bisimulation)

A Kripke model for mutual exclusion

Modeling the system: Kripke models

Description languages for Kripke Model
A Kripke model is usually presented using a structured
programming language.
Each component is presented by specifying
 state variables: determine the state space S and the labeling L
 initial values for state variables: determine the set of initial states
 instructions: determine the transition relation

Components can be combined via
 synchronous composition,
 asynchronous composition.

State explosion problem in model checking:
 linear in model size, but model is exponential in number of

components.

Synchronous Composition

Async Composition

Properties

Properties

Temporal Logics
Express properties of “Reactive Systems”
 – nonterminating behaviours,
 – without explicit reference to time.

Linear Time Temporal Logic (LTL)
 – intepreted over each path of the Kripke structure
 – linear model of time
 – temporal operators

Computation Tree Logic (CTL)
 – interpreted over computation tree of Kripke Model
 – branching model of time
 – temporal operators plus path quantifiers

Temporal Operators

Temporal Operators

Examples

Computational Tree Logic

CTL

CTL

Need for Fairness

Fair Kripke Models

NuSMV

The first SMV program

Declaring State Variables

Adding a State Variable

Declaring the Set of Initial States

Initial States

Expressions

Expressions

Transition Relation

Transition

(0,0)->(1, ((1&0)|(0&1)))=(1,0)
(1,0)->(0, ((0&0)|(1&1)))=(0,1)

Normal Assignments

Normal Assignments

(0,0,0)->(1,0,1+2*0)=(1,0,1)
(1,0,1)->(0,1,0+2*1)=(0,1,2)

Restrictions on ASSIGN

Double Assignments Rule

Circular Dependencies

Modulo 4 Counter w Reset

Modules

Module Parameters

Modulo 8 Counter

Modulo 8 Counter

bit0 bit2bit11 done done

See notes for sequence

Presenter
Presentation Notes
bit0(Tick, value, done) bit1(tick, value, done) bit2(tick, value, done) (1,0,0) (0,0,0) (0,0,0)(1,1,1) (1,0,0) (0,0,0)(1,0,0) (0,1,0) (0,0,0)(1,1,1) (1,1,1) (1,0,0)(1,0,0) (0,0,0) (0,1,0)(1,1,1) (1,0,0) (0,1,0)(1,0,0) (0,1,0) (0,1,0)(1,1,1) (1,1,1) (1,1,1)(1,0,0) (0,0,0) (0,0,0)

Module Hierarchies

Specifications

Invariant specifications

CTL properties

Fairness Constraints

Fairness Constraints

Fairness Constraints

DEFINE

See notes for sequence

Presenter
Presentation Notes
b2,b1,b0000001010011100101110111000

DEFINE

DEFINE

ASSIGN and DEFINE
VAR a: boolean;
ASSIGN a := b | c;
 declares a new state variable a
 becomes part of invariant relation

DEFINE d:= b | c;
 is effectively a macro definition, each occurrence of d is replaced by b |

c
 no extra BDD variable is generated for d
 the BDD for b | c becomes part of each expression using d

Presenter
Presentation Notes
Generally suitable for more complex assignments

Arrays

Records

Constraint Style

Constraint Style

Assignments vs. Constraints

Assignments vs. Constraints

Sync Composition

Sync Composition

Async Composition

A Possible Execution

SMV Steps
Read_Model : read model from input smv file
Flatten_hierarchy : instantiate modules and processes
Build_model : compile the model into BDDs (initial state,
invar, transition relation)
Check_spec : checking specification bottom up

Run SMV
smv [options] inputfile
 -c cache-size for BDD operations
 -k key-table-size for BDD nodes
 -v verbose
 -int interactive mode
 -r

 prints out statistics about reachable state space

SMV Options
–f
 computes set of reachable states first
 Model checking algorithm traverses only the set of

reachable states instead of complete state space.
 useful if reachable state space is a small fraction of total

state space

Presenter
Presentation Notes
: useful to follow progress of verification

SMV Options: Reordering vars
Variable reordering is crucial for small BDD sizes and speed.

Generally, variables which are related need to be close in the ordering.

–i filename –o filename
 Input, output BDD variable ordering to given file.

-reorder
 Invokes automatic variable reordering

Presenter
Presentation Notes
as soon as BDD size exceeds a certain limit

SMV Options: Transition relation
smv -cp part_limit

 Conjunctive Partitioning: Transition relation not evaluated as
a whole, instead individual next() assignments are grouped
into partitions that do not exceed part_limit

 Uses less memory and benefits from early quantification

SMV options: -inc
 Perform incremental evaluation of the transition

relation
 At each step in forward search, transition relation

restriced to reached state set
 Cuts down on size of transition relation with

overhead of extra computation

Example: Client & Server
MODULE client (ack)
VAR
state : {idle, requesting};
req : boolean;

ASSIGN
init(state) := idle;
next(state) :=
case
state=idle : {idle, requesting};
state=requesting & ack : {idle, requesting};
1 : state;
esac;

req := (state=requesting);

MODULE server (req)

VAR
state : {idle, pending, acking};
ack : boolean;

ASSIGN
next(state) :=
case
state=idle & req : pending;
state=pending : {pending, acking};
state=acking & req : pending;
state=acking & !req : idle;
1 : state;
esac;

ack := (state = acking);

Is the specification true?
MODULE main
VAR

c : client(s.ack);
s : server(c.req);

SPEC AG (c.req -> AF s.ack)

Need fairness constraint:
 Suggestion:

FAIRNESS s.ack
 Why is this bad?
 Solution:

FAIRNESS (c.req -> s.ack)

NuSMV
Specifications expressible in CTL, LTL and Real time CTL
logics
Provides both BDD and SAT based model checking.
Uses a number of heuristics for achieving efficiency and
control state explosion
Higher number of features in interactive mode

Cadence SMV
Provides “compositional techniques” to verify large
complex systems by decomposition to smaller
problems.
Provides a variety of techniques for refinement
verification, symmetry reductions, uninterpreted
functions, data type reductions.

Paths and Trees

Specifications

LTL Specs

LTL Specs

Quantitative Properties

CTL Specs

CTL Specs

Bounded CTL Specs

Model-Checking
Algorithms

Model-Checking

State Space Explosion

Symbolic Model-Checking

CTL MC Example

CTL MC Example

CTL MC Example

CTL MC Example

Fixed Point SMC

Bounded MC

BMC Example

BMC Example

BMC Example

BMC Example

BMC

BMC Examples

SMC of Invariants

On the fly Checking of Invariants

On the fly Checking of Invariants:
Counterexamples

On-the-Fly Checking of Invariants

On the fly Checking of Invariants:
Counterexamples

	Model-Checking
	Acknowledgment
	Formal Verification
	Why?
	What kind of bugs?
	Concurrency Bugs
	What kind of bugs?
	What is formal verification?
	Why study verification?
	Where is Verification Used?
	Formal Methods: Solution and Benefits
	Formal Methods: Potential Problems
	FM Techniques
	Simulation and Testing
	Theorem Proving
	Model-Checking
	Industrial Success of MC
	Model Checking
	Slide Number 21
	Model Checking in a nutshell
	What is a Model Checker
	What is a Model Checker
	We will not discuss
	A Kripke model for mutual exclusion
	Modeling the system: Kripke models
	Slide Number 28
	Description languages for Kripke Model
	Synchronous Composition
	Async Composition
	Properties
	Properties
	Temporal Logics
	Temporal Operators
	Temporal Operators
	Examples
	Computational Tree Logic
	CTL
	CTL
	Need for Fairness
	Fair Kripke Models
	Slide Number 43
	Slide Number 44
	The first SMV program
	Declaring State Variables
	Adding a State Variable
	Declaring the Set of Initial States
	Initial States
	Expressions
	Expressions
	Transition Relation
	Transition
	Normal Assignments
	Normal Assignments
	Restrictions on ASSIGN
	Double Assignments Rule
	Circular Dependencies
	Modulo 4 Counter w Reset
	Modules
	Module Parameters
	Modulo 8 Counter
	Modulo 8 Counter
	Module Hierarchies
	Specifications
	Invariant specifications
	CTL properties
	Fairness Constraints
	Fairness Constraints
	Fairness Constraints
	DEFINE
	DEFINE
	DEFINE
	ASSIGN and DEFINE
	Arrays
	Records
	Constraint Style
	Constraint Style
	Assignments vs. Constraints
	Assignments vs. Constraints
	Sync Composition
	Sync Composition
	Async Composition
	A Possible Execution
	SMV Steps
	Run SMV
	SMV Options
	SMV Options: Reordering vars
	SMV Options: Transition relation
	SMV options: -inc
	Example: Client & Server
	Slide Number 92
	Is the specification true?
	NuSMV
	Cadence SMV
	Paths and Trees
	Specifications
	LTL Specs
	LTL Specs
	Quantitative Properties
	CTL Specs
	CTL Specs
	Bounded CTL Specs
	Slide Number 104
	Model-Checking
	State Space Explosion
	Symbolic Model-Checking
	CTL MC Example
	CTL MC Example
	CTL MC Example
	CTL MC Example
	Fixed Point SMC
	Bounded MC
	BMC Example
	BMC Example
	BMC Example
	BMC Example
	BMC
	BMC Examples
	SMC of Invariants
	On the fly Checking of Invariants
	On the fly Checking of Invariants:�Counterexamples
	On-the-Fly Checking of Invariants
	On the fly Checking of Invariants: Counterexamples

