### **Model-Checking**

### Acknowledgment

These slides are derived from a course on "NuSMV and Symbolic Model Checking" (see http://nusmv.irst.itc.it/courses/).

The goals of the course are:

- to provide a practical introduction to symbolic model checking,
- to describe the basic feautures of the NuSMV symbolic model checker.

Authors of the slides:

- Alessandro Cimatti (ITC-irst)
- Marco Pistore (ITC-irst and University of Trento)
- Marco Roveri (ITC-irst)

### **Formal Verification**

- Formal verification means to apply mathematical arguments to prove the correctness of systems
- Systems have bugs
  - Formal verification aims to find and correct such bugs

Why?

- Computer systems are getting more complex and pervasive, and bugs are unacceptable (mission control, medical devices) or prohibitively expensive (Pentium FDIV, Buffer overruns)
- In hardware, 70% of design effort goes into verification, with twice as many verification engineers than RTL designers
- In software, the numbers are similar

# What kind of bugs?

#### Concurrency errors

- Scenario: You are designing a
  - 100K gate ASIC: perhaps 100 concurrent modules
  - Flight control system: dozens of concurrent processes, on multiple CPUs
  - Networked embedded system: tens of thousands of motes
- Under test, the system fails once in three days
  - The error is not reproducible
  - You cannot collect enough real-time data to find the bug
- Concurrency Error
  - Events x and y occur concurrently (say) every 10<sup>10</sup> cycles
  - The designer did not realize events x and y could interact concurrently

### **Concurrency Bugs**

$$x := 0$$
 init  
 $x := x + 1$  ||  $x := x - 1$   
post  $x = 1$ !

- This one is easy!
- This can be prevented by using semaphores (locks)
- Other bugs are not so simple
  - Routing loop in AODV implementations
  - Gigamax cache coherence protocol: required 13 messages in sequence

# What kind of bugs?

#### Sequential programs

- Scenario: Your OS kernel crashes with mangled memory state
- Under test, the system fails once in three days
  - The error is not reproducible
  - You cannot collect enough real-time data to find the bug
- Bug: The stack overflowed, and wrote parts of memory
- Bug: Certain data structure invariants were not met

# What is formal verification?

- Build a mathematical model of the system:
  - what are possible behaviors?
- Write correctness requirements in a specification language:
  - what are desirable behaviors?
- Analysis: (Automatically) check that model satisfies specification
- Formal ) Correctness claim is a precise mathematical statement
- Verification ) Analysis either proves or disproves the correctness claim

# Why study verification?

General approach to improving reliability of systems

 Hardware, systems software, embedded control systems, network protocols, networked embedded systems, ...

Increasing industrial interest

- All major hardware companies employ in-house verification groups: Intel, Motorola, AMD, Lucent, IBM, Fujitsu, …
- Tools from major EDA players: Synopsys Magellan, FormalCheck
- Bunch of start-ups: Calypto, Jasper, 0-In
- SLAM project at Microsoft <u>http://research.microsoft.com/slam</u>
- Coverity

### Where is Verification Used?

- Hardware verification
  - Success in verifying microprocessor designs, ISAs, cache coherence protocols
  - Fits in design flow
  - Tools: SMV, nuSMV, VIS, Mocha, FormalCheck
- Protocol verification
  - Network/Communications protocol implementations
  - Tools: Spin
- Software verification
  - Apply directly to source code (e.g., device drivers)
  - Tools: SLAM, Blast, Magic
- Embedded and real time systems
  - Tools: Uppaal, HyTech, Kronos, Charon

### Formal Methods: Solution and Benefits

- The problem:
  - Certain (sub)systems can bee too complicated/critical to design with traditional techniques.
- Formal Methods:
  - Formal Specification: precise, unambiguous description.
  - Formal Validation & Verification Tools: exhaustive analysis of the formal specification.
- Potential Benefits:
  - Find design bugs in early design stages.
  - Achieve higher quality standards.
  - Shorten time-to-market reducing manual validation phases.
  - Produce well documented, maintainable products.

Highly recommended by ESA, NASA for the design of safety-critical systems.

### Formal Methods: Potential Problems

- Main Issue: Effective use of Formal Methods
  - debug/verify during the design process;
  - without slowing down the design process;
  - without increasing costs too much.
- Potential Problems of Formal Methods:
  - formal methods can be too costly;
  - formal methods can be not effective;
  - training problems;
  - the verification problem can be too difficult.
- How can we get benefits and avoid these problems?
  - by adapting our technologies and tools to the specific problem at hand
  - using advanced verification techniques (e.g. model checking).

# **FM** Techniques

- Model-based simulation or testing
  - method: test for  $\phi$  by exploring possible behaviors.
  - tools: test case generators.
  - applicable if: the system defines an executable model.
- Deductive Methods
  - method: provide a formal proof that  $\phi$  holds.
  - tool: theorem prover, proof assistant or proof checker.
  - applicable if: systems can be described as a mathematical theory.
- Model Checking
  - method: systematic check of  $\phi$  in all states of the system.
  - tools: model checkers.
  - applicable if: system generates (finite) behavioral model.

## Simulation and Testing

Basic procedure:

- take a model (simulation) or a realization (testing).
- stimulate it with certain inputs, i.e. the test cases.
- observe produce behavior and check whether this is "desired".

Drawback:

- The number of possible behaviors can be too large (or even infinite).
- Unexplored behaviors may contain the fatal bug.

Testing and simulation can show the presence of bugs, not their absence.

### **Theorem Proving**

Basic procedure:

- describe the system as a mathematical theory.
- express the property in the mathematical theory.
- prove that the property is a theorem in the mathematical theory.

Drawback:

- Express the system as a mathematical theory can be difficult.
- Find a proof can require a big effort.

Theorem proving can be used to prove absence of bugs.

### **Model-Checking**

Basic procedure:

- describe the system as Finite State Model.
- express properties in Temporal Logic.
- formal V&V by automatic exhaustive search over the state space.

Drawback:

- State space explosion.
- Expressivity hard to deal with parametrized systems.

Model checking can be used to prove absence of bugs.

# Industrial Success of MC

- From academics to industry in a decade.
- Easier to integrate within industrial development cycle:
  - input from practical design languages (e.g. VHDL, SDL, StateCharts);
  - expressiveness limited but often sufficient in practice.
- Does not require deep training ("push-button" technology).
  - Easy to explain as exhaustive simulation.
- Powerful debugging capabilities:
  - detect costly problems in early development stages (cfr. Pentium bug);
  - exhaustive, thus effective (often bugs are also in scaled-down problems).
  - provides counterexamples (directs the designer to the problem).

# **Model Checking**

Model checking is an automatic verification technique for

- finite state concurrent systems.
  - Developed independently by Clarke and Emerson and by Queille and Sifakis in early 1980's.
- Specifications are written in propositional temporal logic.
- Verification procedure is an exhaustive search of the state space of the design.

### Model Checking is a formal verification technique

- analysis of complex reactive systems: hardware designs, communication protocols, embedded control systems for railways/avionics
- Industrial Success of Model Checking
  - From academics to industry in a decade
  - Easier to integrate within industrial development cycle:
    - input from practical design languages (e.g. VHDL, SDL, StateCharts);
    - expressiveness limited but often sufficient in practice.
- Does not require deep training ("push-button" technology).
- Powerful debugging capabilities:
  - detect costly problems in early development stages (cfr. Pentium bug);
  - exhaustive, thus effective (often bugs are also in scaled-down problems).
  - provides counterexamples (directs the designer to the problem).

### Model Checking in a nutshell

- Reactive systems represented as a finite state models
  - (in this course, Kripke models).
- System behaviors represented as (possibly) infinite sequences of states.
- Requirements represented as formulae in temporal logics.
- *"The system satisfies the requirement"* represented as truth of the formula in the Kripke model.
- Efficient model checking algorithms based on exhaustive exploration of the Kripke model.

### What is a Model Checker

A model checker is a software tool that

- given a description of a Kripke model  $M \dots$
- ... and a property Φ,
- decides whether  $M \models \Phi$ ,
- returns "yes" if the property is satisfied,
- otherwise returns "no", and provides a counterexample.

### What is a Model Checker



# We will not discuss

- A deep theoretical background. We will focus on practice.
- Advanced model checking techniques:
  - abstraction;
  - compositional, assume-guarantee reasoning;
  - symmetry reduction;
  - approximation techniques (e.g. directed to bug hunting);
  - model transformation techniques (e.g. minimization wrt to bisimulation)

### A Kripke model for mutual exclusion



N = noncritical, T = trying, C = critical

User 1 User 2

# Modeling the system: Kripke models

- Kripke models are used to describe reactive systems:
  - nonterminating systems with infinite behaviors,
  - e.g. communication protocols, operating systems, hardware circuits;
  - represent dynamic evolution of modeled systems;
  - values to state variables, program counters, content of communication channels.
- Formally, a Kripke model (S, R, I, L) consists of
  - a set of states S;
  - a set of initial states I ⊆ S;
  - a set of transitions  $R \subseteq S \times S$ ;
  - a labeling  $L \subseteq S \times AP$ .



A path in a Kripke model M is an infinite sequence



A state s is reachable in M if there is a path from the initial states to s.

### **Description languages for Kripke Model**

- A Kripke model is usually presented using a structured programming language.
- Each component is presented by specifying
  - state variables: determine the state space S and the labeling L
  - initial values for state variables: determine the set of initial states
  - instructions: determine the transition relation
- Components can be combined via
  - synchronous composition,
  - asynchronous composition.
- State explosion problem in model checking:
  - linear in model size, but model is exponential in number of components.

# Synchronous Composition

- Components evolve in parallel.
- At each time instant, every component performs a transition.



- Typical example: sequential hardware circuits.
- Synchronous composition is the default in NuSMV.

# Async Composition

- Interleaving of evolution of components.
- At each time instant, one component is selected to perform a transition.



- Typical example: communication protocols.
- Asynchronous composition can be represented with NuSMV processes.

### Properties

Safety properties:

- nothing bad ever happens
  - deadlock: two processes waiting for input from each other, the system is unable to perform a transition.
  - no reachable state satisfies a "bad" condition,
     e.g. never two process in critical section at the same time
- can be refuted by a finite behaviour
- it is never the case that p.



### Properties

Liveness properties:

- Something desirable will eventually happen
  - whenever a subroutine takes control, it will always return it (sooner or later)
- · can be refuted by infinite behaviour
  - a subroutine takes control and never returns it



- an infinite behaviour can be presented as a loop

### **Temporal Logics**

Express properties of "Reactive Systems"

- nonterminating behaviours,
- without explicit reference to time.
- Linear Time Temporal Logic (LTL)
  - intepreted over each path of the Kripke structure
  - linear model of time
  - temporal operators
- Computation Tree Logic (CTL)
  - interpreted over computation tree of Kripke Model
  - branching model of time
  - temporal operators plus path quantifiers

### **Temporal Operators**

- "Globally": Gp at t iff p for all  $t' \ge t$ .  $p p p p p p p p p p p p p p p p p \dots$ Gp
- "Future": Fp at t iff p for some  $t' \ge t$ .



### **Temporal Operators**

- "Until": pUq at t iff
  - q for some  $t' \ge t$
  - p in the range [t, t')



• "Next-time": Xp at t iff p at t + 1.



### Examples

Liveness: "if input, then eventually output"

 $G(\text{input} \rightarrow F\text{output})$ 

Strong fairness: "infinitely send implies infinitely recv."

GFsend  $\rightarrow GF$ recv

Weak until: "no output before input"

 $\neg$ output W input

where  $p W q \leftrightarrow (p U q \vee Gp)$ 

### **Computational Tree Logic**

- Every temporal operator (F, G, X, U) preceded by a path quantifier (A or E).
- Universal modalities...




CTL

• Existential modalities...





## CTL

• Other modalities:

Some dualities:

$$\begin{array}{rccc} AGp & \leftrightarrow & \neg EF \neg p \\ AFp & \leftrightarrow & \neg EG \neg p \end{array}$$

• Example: specifications for the mutual exclusion problem.

$$AG \neg (C_1 \land C_2)$$
mutual exclusion $AG(T_1 \rightarrow AFC_1)$ liveness $AG(N_1 \rightarrow EXT_1)$ non-blocking

#### Need for Fairness



# Fair Kripke Models

- Intuitively, fairness conditions are used to eliminate behaviours where a condition never holds
  - e.g. once a process is in critical section, it never exits
- Formally, a Kripke model (S, R, I, L, F) consists of
  - a set of states S;
  - a set of initial states I ⊆ S;
  - a set of transitions R ⊆ S × S;
  - a labeling  $L \subseteq S \times AP$ .
  - $\Rightarrow$  a set of fairness conditions  $F = \{f_1, \ldots, f_n\}$ , with  $f_i \subseteq S$
- Fair path: at least one state for each f<sub>i</sub> occurs an infinite number of times
- Fair state: a state from which at least one fair path originates



#### Fairness: {{ not C1},{not C2}}



# NuSMV

### The first SMV program



An SMV program consists of:

- Declarations of the state variables (b0 in the example); the state variables determine the state space of the model.
- Assignments that define the valid initial states (init(b0) := 0).
- $\Rightarrow$  Assignments that define the transition relation (next(b0) := !b0).

### **Declaring State Variables**

The SMV language provides booleans, enumerative and bounded integers as data types:

#### boolean:

VAR

x : boolean;

#### enumerative:

```
VAR
  st : {ready, busy, waiting, stopped};
```

#### bounded integers (intervals):

VAR n:1..8;

## Adding a State Variable

MODULE main VAR b0 : boolean; b1 : boolean; init(b0) := 0;

ASSIGN

next(b0) := !b0;



Remarks:

- The new state space is the artesian product of the ranges of the variables.
- Synchronous composition between the "subsystems" for b0 and b1.



### Declaring the Set of Initial States

For each variable, we constrain the values that it can assume in the *initial* states.

```
init(<variable>) := <simple_expression> ;
```

simple\_expression> must evaluate to values in the domain of <variable>.

If the initial value for a variable is not specified, then the variable can initially assume any value in its domain.

#### **Initial States**

#### MODULE main VAR

b0 : boolean;

b1 : boolean;

#### ASSIGN

| init(b0) | := | 0;   |
|----------|----|------|
| next(b0) | := | !b0; |

init(b1) := 0;



### Expressions

Arithmetic operators:

+ - \* / mod - (unary)

Comparison operators:

= != > < <= >=

Logic operators:

& | xor ! (not) -> <->

#### Conditional expression:

c1 : e1; c2 : e2; ... if c1 then e1 else if c2 then e2 else if ... else en 1 : en; esac

Set operators:

{v1, v2, ..., vn} (enumeration) in (set inclusion) union (set union)

#### **Expressions**

Expressions in SMV do not necessarily evaluate to one value. In general, they can represent a set of possible values.

```
init(var) := \{a,b,c\} union \{x,y,z\};
```

- The meaning of := in assignments is that the lhs can assume non-deterministically a value in the set of values represented by the rhs.
- A constant c is considered as a syntactic abbreviation for {c} (the singleton containing c).

#### **Transition Relation**

The transition relation is specified by constraining the values that variables can assume in the next state.

```
next(<variable>) := <next_expression> ;
```

<r <next\_expression> must evaluate to values in the domain of <variable>.

<mext\_expression> depends on "current" and "next" variables:

```
next(a) := { a, a+1 } ;
next(b) := b + (next(a) - a) ;
```

If no next() assignment is specified for a variable, then the variable can evolve non deterministically, i.e. it is unconstrained. Unconstrained variables can be used to model non-deterministic *inputs* to the system.

### Transition



#### (0,0) -> (1, ((1&0)|(0&1))) = (1,0)(1,0) -> (0, ((0&0)|(1&1))) = (0,1)

#### Normal Assignments

- In Normal assignments constrain the *current value* of a variable to the current values of other variables.
- They can be used to model outputs of the system.

```
<variable> := <simple_expression> ;
```

<simple\_expression> must evaluate to values in the domain of the <variable>.

#### Normal Assignments



$$(0,0,0) -> (1,0,1+2*0) = (1,0,1)$$
  
$$(1,0,1) -> (0,1,0+2*1) = (0,1,2)$$

### **Restrictions on ASSIGN**

- For technical reasons, the transition relation must be *total*, i.e., for every state there must be at least one successor state.
- In order to guarantee that the transition relation is total, the following restrictions are applied to the SMV programs:
- Double assignments rule Each variable may be assigned only once in the program.
- Circular dependencies rule A variable cannot have "cycles" in its dependency graph that are not broken by delays.
- If an SMV program does not respect these restrictions, an error is reported by NuSMV.

#### **Double Assignments Rule**

#### Each variable may be assigned only once in the program.

All of the following combinations of assignments are illegal:

```
init(status) := ready;
init(status) := busy;
next(status) := ready;
next(status) := busy;
status := ready;
status := busy;
init(status) := ready;
status := busy;
next(status) := ready;
status := busy;
```

#### **Circular Dependencies**

A variable cannot have "cycles" in its dependency graph that are not broken by delays.

All the following combinations of assignments are illegal:

```
x := (x + 1) mod 2;
x := (y + 1) mod 2;
y := (x + 1) mod 2;
next(x) := x & next(x);
next(x) := x & next(y);
next(y) := y & next(y);
```

The following example is *legal*, instead:

```
next(x) := x & next(y);
next(y) := y & x;
```

#### Modulo 4 Counter w Reset

The counter can be reset by an external "uncontrollable" reset signal.

```
MODULE main
 VAR
   b0 : boolean;
   b1 : boolean;
  reset : boolean;
                                            0
   out : 0..3;
 ASSIGN
   init(b0) := 0;
   next(b0) := case
                 reset = 1 : 0;
                 reset = 0 : !b0;
                                                          2
                                            3
               esac;
   init(b1) := 0;
   next(b1) := case
                 reset : 0;
                       : ((!b0 & b1) | (b0 & !b1));
                 1
               esac;
   out := b0 + 2*b1;
```

#### Modules

An SMV program can consist of one or more module declarations.



- Modules are instantiated in other modules. The instantiation is performed inside the VAR declaration of the parent module.
- In each SMV specification there must be a module main. It is the top-most module.
- All the variables declared in a module instance are visible in the module in which it has been instantiated via the dot notation (e.g., m1.out, m2.out).

### Module Parameters

#### Module declarations may be parametric.





- Formal parameters (in) are substituted with the actual parameters (m2.out m1.out) when the module is instantiated.
- Actual parameters can be any legal expression.
- Actual parameters are passed by reference.

#### Modulo 8 Counter

```
MODULE counter cell(tick)
  VAR
    value : boolean;
    done : boolean;
  ASSIGN
    init(value) := 0;
    next(value) := case
      tick = 0 : value;
      tick = 1 : (value + 1) mod 2;
    esac;
    done := tick & (((value + 1) mod 2) = 0);
```

Remarks:

# tick is the formal parameter of module counter\_cell.



#### Remarks:

- Module counter\_cell is instantiated three times.
- In the instance bit0, the formal parameter tick is replaced with the actual parameter 1.
- When a module is instantiated, all variables/symbols defined in it are preceded by the module instance name, so that they are unique to the instance.

#### See notes for sequence

#### Module Hierarchies

A module can contain instances of others modules, that can contain instances of other modules... provided the module references are not circular.

```
MODULE counter_8 (tick)
  VAR
    bit0 : counter cell(tick);
    bit1 : counter cell(bit0.done);
    bit2 : counter cell(bit1.done);
    out : 0..7;
    done : boolean;
  ASSIGN
    out := bit0.value + 2*bit1.value + 4*bit2.value;
    done := bit2.done;
MODULE counter_512(tick) -- A counter modulo 512
  VAR
    b0 : counter 8(tick);
    b1 : counter 8(b0.done);
    b2 : counter 8(b1.done);
    out : 0..511;
 ASSIGN
    out := b0.out + 8*b1.out + 64*b2.out;
```

### **Specifications**

- The SMV language allows for the specification of different kinds of properties:
  - invariants,
  - CTL formulas,
  - LTL formulas...
- Specifications can be added in any module of the program.
- Each specification is verified separately by NuSMV.

#### Invariant specifications

Invariant properties are specified via the keyword INVARSPEC: INVARSPEC <simple expression>

Example: MODULE counter cell(tick) . . . MODULE counter\_8 (tick) VAR bit0 : counter cell(tick); bit1 : counter cell(bit0.done); bit2 : counter\_cell(bit1.done); out : 0..7; done : boolean; ASSIGN out := bit0.value + 2\*bit1.value + 4\*bit2.value; done := bit2.done; INVARSPEC done <-> (bit0.done & bit1.done & bit2.done)

# **CTL** properties

CTL properties are specified via the keyword SPEC:

```
SPEC <ctl_expression>
```

where <ctl\_expression> can contain the following temporal operators:

| АX | _ | AF | _ | $\mathbb{A}\mathcal{G}$ | _ | A[_  | U | _] |
|----|---|----|---|-------------------------|---|------|---|----|
| ΕX | _ | EF | _ | $\mathbf{E}\mathbf{G}$  | _ | E [_ | U | _] |

It is possible to reach a state in which out = 3.
SPEC EF out = 3

# A state in which out = 3 is always reached. SPEC AF out = 3

It is always possible to reach a state in which out = 3.
SPEC AG EF out = 3

Even time a state with out = 2 is reached, a state with out = 3 is reached afterwards.

SPEC AG (out =  $2 \rightarrow AF$  out = 3)

#### Fairness Constraints

Let us consider again the counter with reset.

- The specification AF out = 1 is not verified.
- On the path where reset is always 1, then the system loops on a state where out = 0, since the counter is always reset: reset = 1,1,1,1,1,1,1,1... out = 0,0,0,0,0,0,0...
- Similar considerations hold for the property AF out = 2. For instance, the sequence:

reset = 0,1,0,1,0,1,0...

generates the loop:

out = 0, 1, 0, 1, 0, 1, 0...

which is a counterexample to the given formula.

#### Fairness Constraints

- In NuSMV allows to specify fairness constraints.
- Fairness constraints are formulas which are assumed to be true infinitely often in all the execution paths of interest.
- During the verification of properties, NuSMV considers path quantifiers to apply only to fair paths.
- Fairness constraints are specified as follows: FAIRNESS <simple\_expression>

#### Fairness Constraints

With the fairness constraint

FAIRNESS out = 1

we restrict our analysis to paths in which the property out = 1 is true infinitely often.

- The property AF out = 1 under this fairness constraint is now verified.
- The property AF out = 2 is still not verified.
- Adding the fairness constraint out = 2, then also the property AF out = 2 is verified.

### DEFINE

In the following example, the values of variables out and done are defined by the values of the other variables in the model.

```
MODULE main -- counter 8
VAR
 b0 : boolean;
 b1 : boolean;
 b2 : boolean;
  out : 0..8;
  done : boolean;
ASSIGN
  init(b0) := 0;
  init(b1) := 0;
  init(b2) := 0;
  next(b0) := !b0;
  next(b1) := (!b0 \& b1) | (b0 \& !b1);
  next(b2) := ((b0 \& b1) \& !b2) | (!(b0 \& b1) \& b2);
  out := b0 + 2*b1 + 4*b2;
  done := b0 & b1 & b2;
```



### DEFINE

DEFINE declarations can be used to define abbreviations:

```
MODULE main -- counter 8
VAR
 b0 : boolean;
 b1 : boolean;
 b2 : boolean;
ASSIGN
  init(b0) := 0;
  init(b1) := 0;
  init(b2) := 0;
  next(b0) := !b0;
  next(b1) := (!b0 & b1) | (b0 & !b1);
  next(b2) := ((b0 & b1) & !b2) | (!(b0 & b1) & b2);
DEFINE
  out := b0 + 2*b1 + 4*b2;
  done := b0 & b1 & b2;
```

# DEFINE

The syntax of DEFINE declarations is the following:

```
DEFINE <id> := <simple_expression> ;
```

- They are similar to macro definitions.
- No new state variable is created for defined symbols (hence, no added complexity to model checking).
- Each occurrence of a defined symbol is replaced with the body of the definition.

# ASSIGN and DEFINE

#### VAR a: boolean;

ASSIGN a := b | c;

- declares a new state variable a
- becomes part of invariant relation

#### $\bullet$ DEFINE d:= b | c;

- is effectively a macro definition, each occurrence of d is replaced by b |
   c
- no extra BDD variable is generated for d
- the BDD for b | c becomes part of each expression using d
#### Arrays

The SMV language provides also the possibility to define arrays.

#### VAR

- x : array 0..10 of booleans;
- y : array 2..4 of 0..10;
- z : array 0..10 of array 0..5 of {red, green, orange};

#### ASSIGN

```
init(x[5]) := 1;
init(y[2]) := {0,2,4,6,8,10};
init(z[3][2]) := {green, orange};
```

Remark: Array indexes in SMV must be constants.

#### Records

Records can be defined as modules without parameters and assignments.

```
MODULE point
  VAR x: -10..10;
      y: -10..10;
MODULE circle
  VAR center: point;
      radius: 0..10;
MODULE main
  VAR c: circle;
  ASSIGN
    init(c.center.x) := 0;
    init(c.center.y) := 0;
    init(c.radius) := 5;
```

#### **Constraint Style**

The following SMV program:

can be alternatively defined in a constraint style, as follows:

```
MODULE main
VAR request : boolean;
   state : {ready,busy};
INIT
   state = ready
TRANS
   (state = ready & request) -> next(state) = busy
```

#### **Constraint Style**

- The SMV language allows for specifying the model by defining constraints on:
  - the states: INVAR <simple\_expression>
  - the initial states:

INIT <simple\_expression>

- the transitions: TRANS <next expression>
- There can be zero, one, or more constraints in each module, and constraints can be mixed with assignments.
- Any propositional formula is allowed in constraints.
- Very useful for writing translators from other languages to NuSMV.
- INVAR p is equivalent to INIT p and TRANS next(p), but is more efficient.
- ☞ Risk of defining inconsistent models (INIT p & !p).

#### Assignments vs. Constraints

Any ASSIGN-based specification can be easily rewritten as an equivalent constraint-based specification:

```
ASSIGN

init(state) := {ready,busy}; INIT state in {ready,busy}

next(state) := ready; TRANS next(state) = ready

out := b0 + 2*b1; INVAR out = b0 + 2*b1
```

The converse is not true: constraint

```
TRANS
next(b0) + 2*next(b1) + 4*next(b2) =
(b0 + 2*b1 + 4*b2 + tick) mod 8
```

cannot be easily rewritten in terms of ASSIGNS.

#### Assignments vs. Constraints

- Models written in assignment style:
  - by construction, there is always at least one initial state;
  - by construction, all states have at least one next state;
  - non-determinism is apparent (unassigned variables, set assignments...).
- Models written in constraint style:
  - INIT constraints can be inconsistent:
    - inconsistent model: no initial state,
    - any specification (also SPEC 0) is vacuously true.
  - TRANS constraints can be inconsistent:
    - the transition relation is not total (there are deadlock states),
    - NuSMV detects and reports this case.
  - non-determinism is hidden in the constraints: TRANS (state = ready & request) -> next(state) = busy

#### Sync Composition

By default, composition of modules is synchronous: all modules move at each step.

```
MODULE cell(input)
VAR
val : {red, green, blue};
ASSIGN
next(val) := {val, input};
MODULE main
VAR
c1 : cell(c3.val);
c2 : cell(c1.val);
c3 : cell(c2.val);
```



#### Sync Composition

A possible execution:

| step | c1.val | c2.val | c3.val |
|------|--------|--------|--------|
| 0    | red    | green  | blue   |
| 1    | red    | red    | green  |
| 2    | green  | red    | green  |
| 3    | green  | red    | green  |
| 4    | green  | red    | red    |
| 5    | red    | green  | red    |
| 6    | red    | red    | red    |
| 7    | red    | red    | red    |
| 8    | red    | red    | red    |
| 9    | red    | red    | red    |
| 10   | red    | red    | red    |

#### Async Composition

- Asynchronous composition can be obtained using keyword process.
- In asynchronous composition one process moves at each step.
- Boolean variable running is defined in each process:
  - it is true when that process is selected;
  - it can be used to guarantee a fair scheduling of processes.

```
MODULE cell(input)
VAR
val : {red, green, blue};
ASSIGN
next(val) := {val, input};
FAIRNESS
running
MODULE main
VAR
c1 : process cell(c3.val);
c2 : process cell(c1.val);
c3 : process cell(c2.val);
```

#### A Possible Execution

A possible execution:

| step | runnig | c1.val | c2.val | c3.val |
|------|--------|--------|--------|--------|
| 0    | -      | red    | green  | blue   |
| 1    | c2     | red    | red    | blue   |
| 2    | c1     | blue   | red    | blue   |
| 3    | c1     | blue   | red    | blue   |
| 4    | c2     | blue   | red    | blue   |
| 5    | c3     | blue   | red    | red    |
| 6    | c2     | blue   | blue   | red    |
| 7    | c1     | blue   | blue   | red    |
| 8    | c1     | red    | blue   | red    |
| 9    | c3     | red    | blue   | blue   |
| 10   | c3     | red    | blue   | blue   |

## SMV Steps

- Read\_Model : read model from input smv file
- Flatten\_hierarchy : instantiate modules and processes
- Build\_model : compile the model into BDDs (initial state, invar, transition relation)
- Check\_spec : checking specification bottom up

## Run SMV

#### smv [options] inputfile

- -c cache-size for BDD operations
- -k key-table-size for BDD nodes
- -v verbose
- -int interactive mode
- ∎ -r

prints out statistics about reachable state space

# **SMV** Options

**♦** – f

- computes set of reachable states first
- Model checking algorithm traverses only the set of reachable states instead of complete state space.
- useful if reachable state space is a small fraction of total state space

#### SMV Options: Reordering vars

Variable reordering is crucial for small BDD sizes and speed.

Generally, variables which are related need to be close in the ordering.

- –i filename –o filename
  - Input, output BDD variable ordering to given file.
- 🔶 -reorder
  - Invokes automatic variable reordering

#### SMV Options: Transition relation

smv -cp part\_limit

- Conjunctive Partitioning: Transition relation not evaluated as a whole, instead individual next() assignments are grouped into partitions that do not exceed part\_limit
- Uses less memory and benefits from early quantification

#### SMV options: -inc

- Perform incremental evaluation of the transition relation
- At each step in forward search, transition relation restriced to reached state set
- Cuts down on size of transition relation with overhead of extra computation

#### Example: Client & Server

```
MODULE client (ack)
VAR
 state : {idle, requesting};
 req : boolean;
ASSIGN
 init(state) := idle;
 next(state) :=
  case
  state=idle : {idle, requesting};
  state=requesting & ack : {idle, requesting};
  1 : state:
  esac;
```

```
req := (state=requesting);
```

MODULE server (req)

```
VAR
 state : {idle, pending, acking};
 ack : boolean;
ASSIGN
 next(state) :=
  case
  state=idle & req : pending;
  state=pending : {pending, acking};
  state=acking & req : pending;
  state=acking & !req : idle;
  1: state;
  esac;
```

```
ack := (state = acking);
```

#### Is the specification true?

MODULE main VAR

- c : client(s.ack);
- s : server(c.req);

SPEC AG (c.req -> AF s.ack)

Need fairness constraint:

- Suggestion: FAIRNESS s.ack
- Why is this bad?
- Solution: FAIRNESS (c.req -> s.ack)

## NuSMV

- Specifications expressible in CTL, LTL and Real time CTL logics
- Provides both BDD and SAT based model checking.
- Uses a number of heuristics for achieving efficiency and control state explosion
- Higher number of features in interactive mode

#### Cadence SMV

- Provides "compositional techniques" to verify large complex systems by decomposition to smaller problems.
- Provides a variety of techniques for refinement verification, symmetry reductions, uninterpreted functions, data type reductions.

#### Paths and Trees

#### An SMV specification defines a Kripke structure:

MODULE main VAR done: boolean; INIT !done TRANS done -> next(done)



- The execution of the Kripke structure can be seen as:
  - an infinite tree







#### **Specifications**

In the SMV language:

- Specifications can be added in any module of the program.
- Each property is verified separately.
- Different kinds of properties are allowed:
  - Properties on the reachable states
    - invariants (INVARSPEC)
  - Properties on the computation paths (*linear time* logics):
    - LTL (LTLSPEC)
    - qualitative characteristics of models (COMPUTE)
  - Properties on the computation tree (branching time logics):
    - CTL (SPEC)
    - Real-time CTL (SPEC)





#### LTL Specs

ITLSPEC <1tl expression>

A state in which out = 3 is eventually reached.

```
LTLSPEC F out = 3
```

Condition out = 0 holds until reset becomes false.
LTLSPEC (out = 0) U (!reset)

Even time a state with out = 2 is reached, a state with out = 3 is reached afterwards.

LTLSPEC G (out =  $2 \rightarrow F$  out = 3)

#### **Quantitative Properties**

It is possible to compute the minimum and maximum length of the paths between two specified conditions.

- Quantitative characteristics are specified via the keyword COMPUTE: COMPUTE MIN/MAX [ <simple expression> , <simple expression> ]
- For instance, the shortest path between a state in which out = 0 and a state in which out = 3 is computed with

```
COMPUTE
MIN [ out = 0 , out = 3]
```

The length of the longest path between a state in which out = 0 and a state in which out = 3.

```
COMPUTE
MAX [ out = 0 , out = 3]
```

#### **CTL** Specs



EF P

#### **CTL Specs**

- CTL properties are specified via the keyword SPEC: SPEC <ctl\_expression>
- It is possible to reach a state in which out = 3.
  SPEC EF out = 3
- A state in which out = 3 is always reached.

```
SPEC AF out = 3
```

- It is always possible to reach a state in which out = 3.
  SPEC AG EF out = 3
- Even time a state with out = 2 is reached, a state with out = 3 is reached afterwards.

SPEC AG (out =  $2 \rightarrow AF$  out = 3)

#### **Bounded CTL Specs**

NuSMV provides bounded CTL (or real-time CTL) operators.

 $\ll$  There is no state that is reachable in 3 steps where out = 3 holds.

```
SPEC
!EBF 0..3 out = 3
```

A state in which out = 3 is reached in 2 steps.

ABF 0..2 out = 3

From any reachable state, a state in which out = 3 is reached in 3 steps.
SPEC
AG ABF 0..3 out = 3

# Model-Checking Algorithms

#### **Model-Checking**

Model Checking is a formal verification technique where...

• ...the system is represented as Finite State Machine



• ...the properties are expressed as temporal logic formulae

LTL:  $G(p \rightarrow Fq)$  CTL:  $AG(p \rightarrow AFq)$ 

 ...the model checking algorithm checks whether all the executions of the model satisfy the formula.

#### State Space Explosion

The bottleneck:

- Exhaustive analysis may require to store all the states of the Kripke structure
- The state space may be exponential in the number of components
- State Space Explosion: too much memory required

Symbolic Model Checking:

- Symbolic representation
- Different search algorithms

#### Symbolic Model-Checking

Symbolic representation:

- manipulation of sets of states (rather than single states);
- sets of states represented by formulae in propositional logic;
  - set cardinality not directly correlated to size
- expansion of sets of transitions (rather than single transitions);
- two main symbolic techniques:
  - Binary Decision Diagrams (BDDs)
  - Propositional Satisfiability Checkers (SAT solvers)

Different model checking algorithms:

- Fix-point model checking (historically, for CTL)
- Bounded Model Checking (historically, for LTL)
- Invariant Checking

#### CTL MC Example

Consider a simple system and a specification:



AG(p -> AFq)

ldea:

- construct the set of states where the formula holds
- proceeding "bottom-up" on the structure of the formula
- q, AFq, p, p  $\rightarrow$  AF q, AG(p  $\rightarrow$  AF q)

#### CTL MC Example



AF q is the union of q, AX q, AX AX q, ...

#### CTL MC Example


# CTL MC Example



The set of states where the formula holds is empty!

Counterexample reconstruction is based on the intermediate sets.

# Fixed Point SMC

Model Checking Algorithm for CTL formulae based on fix-point computation:

- traverse formula structure, for each subformula build set of satisfying states; compare result with initial set of states.
- boolean connectives: apply corresponding boolean operation;
- on AX Φ, apply preimage computation

 $- \ \forall \mathbf{s}'.(\mathcal{T}(\mathbf{s},\mathbf{s}') \to \Phi(\mathbf{s}'))$ 

• on  $AF \Phi$ , compute least fixpoint using

 $- \operatorname{AF} \Phi \leftrightarrow (\Phi \lor \operatorname{AX} \operatorname{AF} \Phi)$ 

- on  $\operatorname{AG}\Phi,$  compute greatest fixpoint using
  - $\operatorname{AG} \Phi \leftrightarrow (\Phi \wedge \operatorname{AX} \operatorname{AG} \Phi)$

### Bounded MC

Key ideas:

- looks for counter-example paths of increasing length k
  - oriented to finding bugs
- for each k, builds a boolean formula that is satisfiable iff there is a counter-example of length k
  - can be expressed using  $k \cdot |\mathbf{s}|$  variables
  - formula construction is not subject to state explosion
- satisfiability of the boolean formulas is checked using a SAT procedure
  - can manage complex formulae on several 100K variables
  - returns satisfying assignment (i.e., a counter-example)



- Formula: G(p -> Fq)
- Negated Formula (violation): F(p & G ! q)

• 
$$k = 0$$
: --- 1

• No counter-example found.



Formula: G(p -> Fq)



No counter-example found.



• Formula: G(p -> Fq)



• No counter-example found.







• The 2nd trace is a counter-example!

# BMC

Bounded Model Checking:
Given a FSM M = ⟨S, I, T⟩, an LTL property φ and a bound k ≥ 0:

 $\mathcal{M} \models_k \phi$ 

This is equivalent to the satisfiability problem on formula:

$$\llbracket \mathcal{M}, \phi \rrbracket_k \equiv \llbracket \mathcal{M} \rrbracket_k \wedge \llbracket \phi \rrbracket_k$$

where:

-  $\llbracket \mathcal{M} \rrbracket_k$  is a k-path compatible with  $\mathcal{I}$  and  $\mathcal{T}$ :

$$\mathcal{I}(\mathbf{s}_0) \wedge \mathcal{T}(\mathbf{s}_0, \mathbf{s}_1) \wedge \ldots \mathcal{T}(\mathbf{s}_{k-1}, \mathbf{s}_k)$$

-  $\llbracket \phi \rrbracket_k$  says that the k-path satisfies  $\phi$ 

•  $\phi = F p$ 



•  $\phi = \operatorname{G} p$ 





# SMC of Invariants

Checking invariant properties (e.g. AG ! bad is a reachability problem):

is there a reachable state that is also a bad state (\*)?



#### On the fly Checking of Invariants

Anticipate bug detection:

at each layer, check if a new state is a bug



# Counterexamples

If a bug is found,

a counterexample can be reconstructed proceeding backwards



# **On-the-Fly Checking of Invariants**

Anticipate bug detection:

• at each layer, check if a new state is a bug



# Counterexamples

If a bug is found,

• a counterexample can be reconstructed proceeding backwards

