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Formal Verification

# Formal verification means to apply mathematical
arguments to prove the correctness of systems

# Systems have bugs
= Formal verification aims to find and correct such bugs



Why?

# Computer systems are getting more complex and
pervasive, and bugs are unacceptable (mission
control, medical devices) or prohibitively expensive
(Pentium FDIV, Buffer overruns)

# In hardware, 70% of design effort goes into
verification, with twice as many verification engineers
than RTL designers

# |n software, the numbers are similar



What kind of bugs?

# Concurrency errors

# Scenario: You are designing a
= 100K gate ASIC: perhaps 100 concurrent modules

= Flight control system: dozens of concurrent processes, on multiple
CPUs

= Networked embedded system: tens of thousands of motes
# Under test, the system fails once in three days
= The error is not reproducible
= You cannot collect enough real-time data to find the bug
# Concurrency Error
= Events x and y occur concurrently (say) every 1010 cycles
= The designer did not realize events x and y could interact concurrently



Concurrency Bugs

X := 0 init
X =x+1 | X =x-1
!

|
post x =1

# This one is easy!
# This can be prevented by using semaphores (locks)
# Other bugs are not so simple

= Routing loop in AODV implementations

= Gigamax cache coherence protocol: required 13 messages in
sequence



What kind of bugs?

# Sequential programs

# Scenario: Your OS kernel crashes with mangled
memory state

# Under test, the system fails once in three days
= The error is not reproducible
= You cannot collect enough real-time data to find the bug

# Bug: The stack overflowed, and wrote parts of memory
# Bug: Certain data structure invariants were not met



What iIs formal verification?

# Build a mathematical model of the system:
= what are possible behaviors?

# \Write correctness requirements in a specification language:
= what are desirable behaviors?

# Analysis: (Automatically) check that model satisfies specification
# Formal ) Correctness claim is a precise mathematical statement

# Verification ) Analysis either proves or disproves the correctness
claim
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Why study verification?

# General approach to improving reliability of systems

= Hardware, systems software, embedded control systems, network
protocols, networked embedded systems, ...

# Increasing industrial interest

= All major hardware companies employ in-house verification groups: Intel,
Motorola, AMD, Lucent, IBM, Fuijitsu, ...

= Tools from major EDA players: Synopsys Magellan, FormalCheck
= Bunch of start-ups: Calypto, Jasper, 0-In

= SLAM project at Microsoft
= Coverity


http://research.microsoft.com/slam�

# Hardware verification

= Success in verifying microprocessor designs, ISAs, cache
coherence protocols

= Fits in design flow
s Tools: SMV, nuSMV, VIS, Mocha, FormalCheck

# Protocol verification
= Network/Communications protocol implementations
= Tools: Spin

# Software verification
= Apply directly to source code (e.g., device drivers)
= Tools: SLAM, Blast, Magic

# Embedded and real time systems
= Tools: Uppaal, HyTech, Kronos, Charon
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Formal Methods: Solution and Benefits

e The problem:

— Certain (sub)systems can bee too complicated/critical to design with
traditional techniques.

e Formal Methods:

— Formal Specification: precise, unambiguous description.
— Formal Validation & Verification Tools: exhaustive analysis of the formal
specification.
o Potential Benefits:

— Find design bugs in early design stages.

— Achieve higher quality standards.

— Shorten time-to-market reducing manual validation phases.
— Produce well documented, maintainable products.

Highly recommended by ESA, NASA for the design of safety-critical systems.



Formal Methods: Potential Problems

e Main Issue: Effective use of Formal Methods

— debug/verify during the design process;
— without slowing down the design process;
— without increasing costs too much.

e Potential Problems of Formal Methods:

— formal methods can be too costly;

— formal methods can be not effective;

— training problems;

— the verification problem can be too difficult.

e How can we get benefits and avoid these problems?

— by adapting our technologies and tools to the specific problem at hanc
— using advanced verification techniques (e.g. model checking).



FM Techniques

e Model-based simulation or testing

— method: test for ¢ by exploring possible behaviors.
— tools: test case generators.
— applicable if: the system defines an executable model.

¢ Deductive Methods

— method: provide a formal proof that ¢ holds.
— tool: theorem prover, proof assistant or proof checker.
— applicable if: systems can be described as a mathematical theory.

e Model Checking

— method: systematic check of ¢ in all states of the system.
— tools: model checkers.

— applicable if: system generates (finite) behavioral model.



Simulation and Testing

Basic procedure:

e take a model (simulation) or a realization (testing).
e stimulate it with certain inputs, i.e. the test cases.
e observe produce behavior and check whether this is “desired”.

Drawback:

e The number of possible behaviors can be too large (or even infinite).
e Unexplored behaviors may contain the fatal bug.

Testing and simulation can show the presence of bugs, not their absence.



Theorem Proving

Basic procedure:

e describe the system as a mathematical theory.
e express the property in the mathematical theory.
e prove that the property is a theorem in the mathematical theory.

Drawback:

e EXpress the system as a mathematical theory can be difficult.
e Find a proof can require a big effort.

Theorem proving can be used to prove absence of bugs.



Model-Checking

Basic procedure:

e describe the system as Finite State Model.
e express properties in Temporal Logic.
o formal V&V by automatic exhaustive search over the state space.

Drawback:

o State space explosion.
e EXpressivity — hard to deal with parametrized systems.

Model checking can be used to prove absence of bugs.



Industrial Success of MC

From academics to industry in a decade.

Easier to integrate within industrial development cycle:
— input from practical design languages (e.g. VHDL, SDL, StateCharts);

— expressiveness limited but often sufficient in practice.

Does not require deep training (“push-button” technology).
— Easy to explain as exhaustive simulation.

Powerful debugging capabilities:
— detect costly problems in early developmemt stages (cfr. Pentium bug);
— exhaustive, thus effective (often bugs are also in scaled-down problems).

— provides counterexamples (directs the designer to the problem).



Model Checking

# Model checking is an automatic verification
technique for

# finite state concurrent systems.

= * Developed independently by Clarke and Emerson and
by Queille and Sifakis in early 1980's.

# o Specifications are written in propositional
temporal logic.

# o \erification procedure is an exhaustive search
of the state space of the design.




# Model Checking is a formal verification technique

= analysis of complex reactive systems: hardware designs,
communication protocols, embedded control systems for
railways/avionics

# Industrial Success of Model Checking
= From academics to industry in a decade

= Easier to integrate within industrial development cycle:

— input from practical design languages (e.g. VHDL, SDL, StateCharts);
— expressiveness limited but often sufficient in practice.

# Does not require deep training (“push-button” technology).
# Powerful debugging capabilities:

= — detect costly problems in early developmemt stages (cfr. Pentium
bug);

= — exhaustive, thus effective (often bugs are also in scaled-down
problems).

= — provides counterexamples (directs the designer to the problem).



Model Checking in a nutshell

# Reactive systems represented as a finite state
models

= (in this course, Kripke models).

# System behaviors represented as (possibly) infinite
sequences of states.

# Requirements represented as formulae in temporal
logics.

® “The system satisfies the requirement” represented
as truth of the formula in the Kripke model.

# Efficient model checking algorithms based on
exhaustive exploration of the Kripke model.



What 1s a Model Checker

A model checker is a software tool that

e given a description of a Kripke model M ...
e . and a property &,

e decides whether M = &,

e returns “yes’ if the property is satisfied,

e Otherwise returns "no”, and provides a counterexample.



What 1s a Model Checker

temporal formula
T

G(p > Fa)

p

Model
Checker
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finite-state model q

counterexample



We will not discuss

# A deep theoretical background. We will focus on
practice.

# Advanced model checking techniques:
= — abstraction;
= — compositional, assume-guarantee reasoning;
= — symmetry reduction;

= — approximation techniques (e.g. directed to bug
hunting);

= — model transformation techniques (e.g. minimization wrt
to bisimulation)



A Kripke model for mutual exclusion
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N = nonecritical, T = trying, C = critical User1 User2



Modeling the system: Kripke models

e Kripke models are used to describe reactive systems:
— nonterminating systems with infinite behaviors,
— e.¢g. communication protocols, operating systems, hardware circuits;
— represent dynamic evolution of modeled systems;
— values to state variables, program counters, content of communication
channels.

e Formally, a Kripke model (S, R, I, L) consists of

_ aset of states S i 1 —(
— aset of initial states 7 C ; Ly
— a set of transitions R C § x S, ‘:33,'3

— alabeling L C S x AP.



A path in a Kripke model M is an infinite sequence
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Description languages for Kripke Model

# A Kripke model is usually presented using a structured
programming language.

# Each component is presented by specifying
= State variables: determine the state space S and the labeling L

= initial values for state variables: determine the set of initial states
= Instructions: determine the transition relation

# Components can be combined via
= Synchronous composition,
= asynchronous composition.

# State explosion problem in model checking:

= linear in model size, but model is exponential in number of
components.



Synchronous Composition

e Components evolve in parallel.

e At each time instant, every component performs a transition.
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e Typical example: sequential hardware circuits.

e Synchronous composition is the default in NuSMV.



Async Composition

¢ Interleaving of evolution of components.

e At each time instant, one component is selected to perform a transition.
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e Typical example: communication protocols.

e Asynchronous composition can be represented with NuSMV processes.



Properties

Safety properties:

e nothing bad ever happens

— deadlock: two processes waiting for input from each other,
the system is unable to perform a transition.

— no reachable state satisfies a “had” condition,
e.qg. never two process in critical section at the same time

e can be refuted by a finite behaviour

e itis never the case that p.

.o
‘."” ‘—0,
o —@

e



Properties

Liveness properties:

o Something desirable will eventually happen

— whenever a subroutine takes control, it will always return it (sooner or later)

e can be refuted by infinite behaviour

— a subroutine takes control and never returns it
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— an infinite behaviour can be presented as a loop



Temporal Logics

# Express properties of “Reactive Systems”
= — nonterminating behaviours,
= — without explicit reference to time.

# Linear Time Temporal Logic (LTL)
= — Iintepreted over each path of the Kripke structure
= — linear model of time
= — temporal operators

# Computation Tree Logic (CTL)
= — interpreted over computation tree of Kripke Model
= — branching model of time
= — temporal operators plus path quantifiers



Temporal Operators
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Temporal Operators

o “Until”; pUq at ¢ iff
— g forsomet > ¢
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Examples

e Liveness: “if input, then eventually output”

G(input — Foutput)

e Strong fairness: “infinitely send implies infinitely recv.”

GFsend — G Frecy

o Weak until: “no output before input”
—-output I input

wherepWgq < (pUq Vv Gp)



Computational Tree Logic

e Every temporal operator (F, G, X, U) preceded by a path quantifier (4 or E).

e Universal modalities...
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CTL

e Other modalities:
AXp, EXp, A(pUq), E(pUq)

e Some dualities:
AGp = —EF-p

e Example: specifications for the mutual exclusion problem.
AG-(C1 A Cy) mutual exclusion

AG(T), — AFC,) liveness
AG(N1 — EXT) non-blocking



Need for Fairness

N = noncritical, T = trying, C = critical
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Fair Kripke Models

o ntuitively, fairness conditions are used to eliminate behaviours where a
condition never holds

— e.g. once a process is in critical section, it never exits

e Formally, a Kripke model (S, R, I, L, F') consists of

-
— a set of states S; A
— a set of initial states 1 C S; 4 ? ;
— aset of transitions R C § x S; m*-i3_:'p

— alabeling L C § x AP.

= a set of fairness conditions F = {f,.... f,},with f; C §
e Fair path: at least one state for each f; occurs an infinite number of times

e Fair state: a state from which at least one fair path originates



Fairness: {{ not C1},{not C2}}
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NuSMV



The first SMV program

MODULE main
VAR

b0 : boolean;

/.r‘
!bD\. " b0
o % Y

ASSIGN
init (b0) := 0; } _
next (b0) := !b0; -

An SMV program consists of:

= Declarations of the state variables (b0 in the example); the state variables
determine the state space of the model.

= Assignments that define the valid initial states (init (b0) := 0).

= Assignments that define the transition relation (next (b0) := !b0).



Declaring State Variables

The SMV language provides booleans, enumerative and bounded integers as data
types:

boolean:

VAR
¥ : boolean:

enumerative:

VAR
st : {ready, busy, waiting, stopped};

bounded integers (intervals):

VAR
n : 1..5;



Adding a State Variable

MODULE main

HAED : boolean; (dexﬁ mm”x_“ f>bcr\
bl : boolean; RJFEL{ 7T H|b1ﬁ
ASSIGN N -_i_—:._..__ R
init (b0} := 0;
next (b0) := !b0; */IDD N fb[}\“
\bl’/ o __\;IE'I
Remarks: ot

P
= The new state space is the artesian product of the ranges of

the variables.

= Synchronous composition between the “subsystems” for b0 and b1.

TR



Declaring the Set of Initial States

<= For each variable, we constrain the values that it can assume in the initial
states.

init (<variables) := <simple expressions ;

& <gimple_expressions must evaluate to values in the domain of <variables.

= |f the initial value for a variable is not specified, then the variable can initially
assume any value in its domain.



Initial States

MODULE main
VAR
b0 : boolean; bU
bl : boolean;

ASETGN
init (b0O) :
next (b0) -

!;G; ffE;m\
\b1

init(bl) :

Il
i

7 bO\
\,b/

ﬁéa\
BV



Expressions

= Arithmetic operators:
+ - * / mod

= Comparison operators:

= | = = < <=

= Logic operators:

(unary)

if c1 then el else if c2 thene2 else if... else en

& | XOr ! (not)
= Conditional expression:
case
cl El;
c2 : eld;
1 v eI
224ac

= Set operators:

{vli,v2,...,vn} (enumeration)

in (set inclusion)

union (set union)



Expressions

= Expressions in SMV do not necessarily evaluate to one value. In general, they
can represent a set of possible values.

init (var) := {a,b,c} union {x,v,z} ;

= The meaning of : = in assignments is that the lhs can assume
non-deterministically a value in the set of values represented by the rhs.

= A constant ¢ is considered as a syntactic abbreviation for { ¢} (the singleton
containing c).



Transition Relation

= The transition relation is specified by constraining the values that variables can
assume in the next state.

next (svariables) := <next expressions ;

* <next_expressions> Must evaluate to values in the domain of <variables.

= <next_expressions> depends on “current’ and “next” variables:

nextia)
next (b)

, a+l }o;

{ a
b + (nexti{a) - a) ;

= |f nonext () assignment is specified for a variable, then the variable can
evolve non deterministically, i.e. it is unconstrained.

Unconstrained variables can be used to model non-deterministic inputs to the
system.



Transition

MODULE main 0

VAR \\/
b0 : boolean; :f !bO\\l
bl : boolean; \JE:]/
ASSIGN o
init (b0) := 0; 2 e
next (b0) := !b0; /b0
\_b1)
init (bl) := 0; “\_/
next (bl) := ((!b0 & bl) | (b0 & !b1l));

4 (0,0)->(1, ((1&0)](0&1)))=(1,0)
# (1,0)->(0, ((0&0)[(1&1)))=(0,1)



Normal Assignments

= Normal assignments constrain the current value of a variable to the current
values of other variables.

= They can be used to model outputs of the system.

<variables := <simple expressions ;

= <gimple_expression> must evaluate to values in the domain of the

<variable-x.



Normal Assignments

~ MODULE main
VAR

b0 : bocolean;
bl : bocolean;
out : 0..3;

RESTIGHN
init (b0O) :
next (b0) :

init(bl) :
next (bl) :

out := b0

+

'b0;

0;
(!0 & bl)

2%b1 ;

=
0 |
./

f’ “T

| (b0 & !bl));

# (0,0,0)->(1,0,1+2*0)=(1,0,1)
# (1,0,1)->(0,1,0+2*1)=(0,1,2)

\,/



Restrictions on ASSIGN

For technical reasons, the transition relation must be total, i.e., for every state there
must be at least one successor state.

In order to guarantee that the transition relation is total, the following restrictions
are applied to the SMV programs:

= Double assignments rule — Each variable may be assigned only once in the
program.

= Circular dependencies rule — A variable cannot have “cycles” in its
dependency graph that are not broken by delays.

If an SMV program does not respect these restrictions, an error is reported by
NuSMV.



Double Assignments Rule

Each variable may be assighed only once in the program.

All of the following combinations of assignments are illegal:

init(status) := ready;
init{status) := busy;
next (statusg) := ready;
next (status) := busy;
status := ready;
status := busy;
init(statusg) := ready;
status := busvy;
next (statug) := ready;

status := busv;



Circular Dependencies

A variable cannot have “cycles” in its dependency graph that are not broken
by delays.

All the following combinations of assignments are illegal:

X = (x 4+ 1) mod 2;

X = (y¥y + 1) mod 2;

<

Yy = (x 4+ 1) mod 2;
next (x) := X & nexti(x);

next (x)
next (v

X & next(y);
Yy & next(x);

The following example is legal, instead:

next (i)
next (y)

X & next(y);
YV o& X;



Modulo 4 Counter w Reset

The counter can be reset by an external “uncontrollable” reset signal.

MODULE main

VAR
b0 : boolean; J—
bl : boolean; ff H\f’ T Hﬂ
reset gaaéean; =0 ) [ 1 |
out : I -
| AN N A
ASSIGH / \
init (b0) = 0; ' |
next (b0) := case ' /
reset = 1 : 0; “
regset = 0 : !b0: “ff H\ {f-zﬁwi
egac; \ -
\ /{ S/
init (bl) := 0; -
next (bl) = Case
reset : 0O:
1 : (!0 & bl) | (b0 & 1bl));
esac;

out := b0 + 2*bl;



Modules

An SMV program can consist of one or more module declarations.

MODULE mod -
VAR out: 0..9; main
ASETGN next (out) :=
(out + 1) mod 10;
MODULE main m1 m2
VAR ml : mod:
m< : mod:
sum: 0..18:

ASETGN sum := ml.out + mZ.out:

= Modules are instantiated in other modules. The instantiation is performed
inside the VAR declaration of the parent module.

= |n each SMV specification there must be a module main. It is the top-most
module.

= All the variables declared in a module instance are visible in the module in
which it has been instantiated via the dot notation (e.g., m1.ocut, m2 . out).



Module Parameters

Module declarations may be parametric.

main
MODULE mod (in)
VAE out: 0..9; out in
e | m1 m2
MODULE main
VAE ml : mod(mZ.out) ;
m2 : mod(ml.out) ; Pﬂ out

= Formal parameters (in) are substituted with the actual parameters (m2 . out
ml .out) when the module is instantiated.

= Actual parameters can be any legal expression.

= Actual parameters are passed by reference.



Modulo 8 Counter

MODULE counter cell (tick)

VAR
value : boolean:
done : boolean;
ASSIGN
init (value) := 0;
next (value) := case
tick = 0 : value;
tick = 1 : (value + 1) mod 2;
esac:
done := tick & (((value + 1) mod 2) = Q)
Remarks:

= tick Is the formal parameter of module counter_cell.



=

MODULE main
VAR

RAa_ _1__ 1 _ A~ _ _ ___ a1 _ __

bit0 : counter cell(l);
bitl : counter cell (bit0.done) ;

bit2 : counter:cell(bitl.done};j
out 0..7

bito [dONE pirg rdone) pieo

LAESTGN
out := bit0.value + 2*bhitl.wvalue + 4*bit2.value:

Remarks:
= Module counter_cell is instantiated three times.

= |n the instance bit0, the formal parameter tick is replaced with the actual
parameter 1.

= \When a module is instantiated, all variables/symbols defined in it are preceded
by the module instance name, so that they are unique to the instance.

# See notes for sequence
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bit0(Tick, value, done)   bit1(tick, value, done)  bit2(tick, value, done) 
(1,0,0) (0,0,0) (0,0,0)
(1,1,1) (1,0,0) (0,0,0)
(1,0,0) (0,1,0) (0,0,0)
(1,1,1) (1,1,1) (1,0,0)
(1,0,0) (0,0,0) (0,1,0)
(1,1,1) (1,0,0) (0,1,0)
(1,0,0) (0,1,0) (0,1,0)
(1,1,1) (1,1,1) (1,1,1)
(1,0,0) (0,0,0) (0,0,0)






Module Hierarchies

A module can contain instances of others modules, that can contain instances of
other modules... provided the module references are not circular.

MODULE counter 8 (tick]

VAR
bit0 : counter cell(tick);
bitl : counter cell(bitO.done);
bit2 : counter cell(bitl.done);
out . 0..7:
done : boolean;
BASSIGHN
out = bit0.value + 2*bitl.value 4+ 4*bit2.value;
done := bit2.done;
MODULE counter 512 (tick) -- A counter modulo 512
VAR
b0 : counter 8 (tick);
bl : counter 8 (b(O.done);
b2 : counter 8 (bl.done);
out : 0..511:
ASEIGH

out := b0.out + 8*bl.out + &4*bZ.out:



Specifications

= The SMV language allows for the specification of different kinds of properties:
¢ Invariants,
e CTL formulas,

o LTL formulas...
= Specifications can be added in any module of the program.

<= Each specification is verified separately by NuSMV.



Invariant specifications

<= |nvariant properties are specified via the keyword INVARSPEC:

INVARSPEC <

= Example:

simple expressions

MODULE counter cell (tick)

MODULE counter 8 (tick)

VAR
bit0
bitl
bit2
out
done

ASESTIGN
out s =
done

INVARSPEC
done =-

counter cell (tick);
counter cell (bit0.done);
counter cell (bitl.done);
0..7;

boolean;

bit0.value + 2*bitl.value + 4*bit2.value;
bit2.done;

> (bit0.done & bitl.done & bit2.done)



CTL properties

= CTL properties are specified via the keyword SPEC:

SPEC «ctl expressions

where <ct1l expressions> can contain the following temporal operators:
AX AF AG A[ U ]

EX EF EG _ E[ U ]

= |t is possible to reach a state in which cut = 3.
SPEC EF out = 3

= A state in which cut = 3 is always reached.
SPEC AF out = 3

= |tis always possible to reach a state in which cut = 3.
SPEC AG EF out = 3

= Even time a state with cut = 2 Is reached, a state with out = 3 is reached

afterwards.
SPEC AG (out = 2 -» AF out = 3)



Fairness Constraints

Let us consider again the counter with reset.
= The specification AF out = 1 is not verified.

= 0On the path where reset is always 1, then the system loops on a state where
out = 0, since the counter is always reset:
reset = 1,1,1,1,1,1,1...
out = 0,0,0,0,0,0,0...

= Similar considerations hold for the property AF out = 2. Forinstance, the
sequence:
reset = 0,1,0,1,0,1,0...
generates the loop:
out = 0,1,0,1,0,1,0...
which is a counterexample to the given formula.



Fairness Constraints

= NuSMV allows to specify fairness constraints.

= Fairness constraints are formulas which are assumed to be true infinitely often
in all the execution paths of interest.

= During the verification of properties, NuUSMV considers path quantifiers to
apply only to fair paths.

= Fairness constraints are specified as follows:
FATRNESS <simple expression:



Fairness Constraints

= \With the fairness constraint

FATENESS
out = 1

we restrict our analysis to paths in which the property out = 1 is true
infinitely often.

= The property AF out = 1 under this fairness constraint is now verified.

= The property AF out = 2 is still not verified.

<= Adding the fairness constraint out = 2, then also the property AF out = 2
s verified.



DEFINE

In the following example, the values of variables out and done are defined by the
values of the other variables in the model.

MCODULE main -- counter 8
VAR

kb0 : boolean:

bl : boolean:

kb2 : boolean:

out = 0..8;

done : boolean:

ASEIGHN
init(b0d) := 0;
init(bl) := 0;
init(b2) := 0;
next (b0) = !b0;
next(bl) := (!b0 & bl) | (b0 & !bl):
next(b2) := ((b0 & bl) & !bZ2) | (1{b0 & bl) & b2);
out = b0 4+ 2*bl + 4*bZ:
done := b0 & bl & bZ;

# See notes for sequence
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b2,b1,b0
000
001
010
011
100
101
110
111
000



DEFINE

DEFINE declarations can be used to define abbreviations:

MODULE main -- counter 8
VAR

kO : boolean:

bl : boolean:

bZ : boolean:

ASSIGN
init(k0) := 0;:
init(bl) := 0:
init(bk2) := 0:

next (bd) := !kbi:
next (bl) (b0 & bl) | (b0 & !bl):
next (b2) ((b0 & bl) & !bZ2) | ({0 & b1l)

DEFINE
out := b0 4+ Z2*bl + 4*hZ:
done PO & bl & bZ;

& b2);



DEFINE

= The syntax of DEFINE declarations is the following:

DEFINE <id> := <simple expressions ;

= They are similar to macro definitions.

= No new state variable is created for defined symbols (hence, no added
complexity to model checking).

= Each occurrence of a defined symbol is replaced with the body of the
definition.



ASSIGN and DEFINE

a: ;
a:=Db]c;
declares a new state variable a
becomes part of invariant relation

d:=Db | c;
Is effectively a macro definition, each occurrence of d is replaced by b |
C
no extra BDD variable is generated for d

the BDD for b | ¢ becomes part of each expression using d
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Arrays

The SMV language provides also the possibility to define arrays.

VAR
¥ : array 0..10 of booleans;
Vv : array 2..4 of 0..10;

z : array 0..10 of array 0..5 of {red, green, Grange};

ASSIGN
init (x[5]) := 1;
init(y[2]) := {0,2,4,6,8,10};
init (z[3][2]) := {green, orange};

= Remark: Array indexes in SMV must be constants.



Records

Records can be defined as modules without parameters and assignments.

MODULE point
VAR x: -10..10;
Vit —ID..lD;

MODULE circle
VAR center: poilnt;

radius: 0..10;

MODULE main
VAR ¢: circle:

ASSTGN
init(c.center.x) := 0:
init (c.center.y) := 0;

init (c.radius) := &5



Constraint Style

The following SMV program:

MODULE main
VAR request : boolean;

state : {ready,busy};
ASEIGN
init (state) := ready;
next (state) := case
state = ready & request : busy;
1 : {ready,busy};

egac;

can be alternatively defined in a constraint style, as follows:

MODULE main
VAR request : boolean;

state : {ready,busy};
INIT
state = ready
TRANS

(state = ready & request) -> next(state) = busy



Constraint Style

= The SMV language allows for specifying the model by defining constraints on:

o the stafes:
INVAR <simple expression:=

e the initial states:
INIT <simple expressions

o the fransitions:
TRANS <next expression:

= There can be zero, one, or more constraints in each module, and constraints
can be mixed with assignments.

= Any propositional formula is allowed in constraints.
= \ery useful for writing translators from other languages to NuSMV.
= INVAR p isequivalentto INIT p and TRANS next (p), but is more efficient.

= Risk of defining inconsistent models (INIT p & !p).



Assignments vs. Constraints

= Any ASSIGN-based specification can be easily rewritten as an equivalent
constraint-based specification:

AESTIGN
init (state) := {ready,busy}; INIT state in {ready,busy}
next (state) := ready; TRANS next(state) = ready
out := b0 + 2%*bl; INVAE out = b0 + Z2*bl

= The converse is not true: constraint

TREANS
next (b0) + Z*next(bl) + 4*next (bZ) =
(b0 + 2*bl + 4*b2 4+ tick) mod 8

cannot be easily rewritten in terms of ASSIGNs.



Assignments vs. Constraints

= Models written in assignment style:

e by construction, there is always at least one initial state;
e by construction, all states have at least one next state;

e non-determinism is apparent (unassigned variables, set assignments...).

= Models written in constraint style:

e INIT constraints can be inconsistent:
— Inconsistent model: no initial state,
— any specification (also SPEC 0) is vacuously true.
e TRANS constraints can be inconsistent:
— the transition relation is not total (there are deadlock states),
— NuSMV detects and reports this case.

e non-determinism is hidden in the constraints:
TRANS (state = ready & request) -> next(state] = busy



Sync Composition

= By default, composition of modules is synchronous:

all modules move at each step.

MODULE cell (input)

VAR

val : {red, green, blue};
ASSIGN

next (val) := {val, input};

MODULE main

VAR
cl : cell{c3.val):
c2 : cell{cl.val):

c¢3i : cell(c2.val):

val

input

c3

cl

val

input

'zjnput

val

c2




Sync Composition

A possible execution:

step | c1.val | c2.val | c3.val
0 red | green | blue
1 red red | green
2 | green | red green
3 green red green
4 green red red
S red | green| red
6 red red red
7 red red red
8 red red red
9 red red red
10 red red red




Async Composition

= Asynchronous composition can be obtained using keyword processe.
= |n asynchronous composition one process moves at each step.

= Boolean variable running is defined in each process:

o itis frue when that process is selected:;
e it can be used to guarantee a fair scheduling of processes.

MODULE cell (input)
VAR
val : {red, green, blue};
ASSIGN
next (val) := {val, input};
FATIRNESS
running

MODULE mailn
VAR
¢l : procegs cell(c3.val);
c2 : procesgs cell(cl.val);
¢3 : process cell(cZ2.val);



A Possible Execution

A possible execution:

step | runnig | c1.val | c2.val | c3.val
0 - red | green | blue
1 c2 red red blue
2 c1 blue red blue
3 c1 blue red blue
il c2 blue red blue
o c3 blue red red
6 c2 blue blue red
7 c1 blue blue red
8 c1 red blue red
9 c3 red blue | blue
10 c3 red blue blue




SMV Steps

# Read_Model : read model from input smv file
# Flatten_hierarchy : instantiate modules and processes

# Build_model : compile the model into BDDs (initial state,
Invar, transition relation)

# Check_spec : checking specification bottom up



Run SMV

# smv [options] inputfile
= -C cache-size for BDD operations
= -k key-table-size for BDD nodes
= -V verbose
= -Int Interactive mode
m -
prints out statistics about reachable state space



SMV Options

® —f
= computes set of reachable states first

= Model checking algorithm traverses only the set of
reachable states instead of complete state space.

= useful if reachable state space is a small fraction of total
state space
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SMV Options: Reordering vars

Variable reordering is crucial for small BDD sizes and speed.

Generally, variables which are related need to be close in the ordering.

—I filename —o filename
= Input, output BDD variable ordering to given file.

-reorder
= Invokes automatic variable reordering


Presenter
Presentation Notes
as soon as BDD size exceeds a certain limit


SMV Options: Transition relation

smv -cp part_limit

Conjunctive Partitioning: Transition relation not evaluated as
a whole, instead individual next() assignments are grouped
Into partitions that do not exceed part_limit

Uses less memory and benefits from early quantification



SMV options: -Inc

Perform incremental evaluation of the transition
relation

At each step in forward search, transition relation
restriced to reached state set

Cuts down on size of transition relation with
overhead of extra computation



Example: Client & Server

MODULE client (ack)

VAR
state : {idle, requesting};
req : boolean;

ASSIGN

init(state) := idle;

next(state) :=

case

state=idle : {idle, requesting};
state=requesting & ack : {idle, requesting};
1 : state;

esac;

req := (state=requesting);



MODULE server (req)

VAR
state : {idle, pending, acking};
ack : boolean;

ASSIGN

next(state) :=

case

state=idle & req : pending;
state=pending : {pending, acking};
state=acking & req : pending;
state=acking & !'req : idle;
1 : state;

esac;

ack := (state = acking);



Is the specification true?

MODULE main
VAR
c : client(s.ack);
s : server(c.req);

SPEC AG (c.req -> AF s.ack)

# Need fairness constraint:

= Suggestion:
FAIRNESS s.ack

= Why is this bad?

= Solution:
FAIRNESS (c.req -> s.ack)



NuSMV

# Specifications expressible in CTL, LTL and Real time CTL
logics
# Provides both BDD and SAT based model checking.

# Uses a number of heuristics for achieving efficiency and
control state explosion

# Higher number of features in interactive mode



Cadence SMV

# Provides “compositional techniques” to verify large
complex systems by decomposition to smaller
problems.

# Provides a variety of techniques for refinement
verification, symmetry reductions, uninterpreted
functions, data type reductions.



Paths and Trees

= An SMV specification defines a Kripke structure:
MODULE main T

4 r
VAR done: boolean; J TN
INIT !done —|!done— = done
TRANS done -> next (done) |
= The execution of the Kripke structure can be seen as:
¢ an infinite tree e as a set of infinite paths.
done ldone 'done 'done 'done
'done _dﬂllﬁ, 'done 'done 'done d[l-l'IE."_.
S | | | 3
ldone  |done done done 'done done dc-ne;_
S N R R )
‘done d one,  |done ._dﬂ ne done  [do mah :du:nn . _:E|C|-I1 E.":

¥ N kY 3 l J L Jl



Specifications

In the SMV language:

= Specifications can be added in any module of the program.

= Each property is verified separately.

= Different kinds of properties are allowed:

¢ Properties on the reachable states
— Invariants (INVARSPEC)
o Properties on the computation paths (/inear time logics):

— LTL (LTLSPECQ)
— qualitative characteristics of models (COMPUTE)

e Properties on the computation tree (branching time logics):

— CTL (sPECQ)
— Real-time CTL (SPEC)



LTL Specs
finally p globally p

Fp

next p

N VAR

Xp




LTL Specs

= LTL properties are specified via the keyword LTLSPEC:
LTLSPEC =1tl expressions

= A state in which cut = 3 is eventually reached.
LTLSPEC F out = 3

= Condition out = 0 holds until reset becomes false.
LTLSPEC (out = 0) U (!reset)

= Even time a state with cut = 2 Is reached, a state with cut = 3 is reached

afterwards.
LTLESPEC G (out = 2 -> F out = 3)



Quantitative Properties

It is possible to compute the minimum and maximum length of the paths between
two specified conditions.

= Quantitative characteristics are specified via the keyword COMPUTE:
COMPUTE MIN/MAX [ =<simple expressions , <slimple expressions ]

= For instance, the shortest path between a state in which cut = 0 and a state
in which cut = 3 is computed with

COMPUTE
MIN [ out = 0 , out = 3]

= The |length of the longest path between a state in which cut = 0 and a state in
which out = 3.

COMPUTE
MAY [ out = 0 , out = 3]



CTL Specs

finally p globally p next p P until g
A[lpUgqgl

ﬁ?z\ A& /ﬁ% &

E[pUql



CTL Specs

= CTL properties are specified via the keyword SPEC:

SPEC <ctl expressions

= |tis possible to reach a state in which cut = 3.
SPEC EF out = 3

= A state in which cut = 3 is always reached.
SPEC AF out = 3

= |tis always possible to reach a state in which cut = 3.

SPEC AG EF out = 3

= Even time a state with cut = 2 Is reached, a state with ocut

afterwards.
SPEC AG (out = 2 -> AF out = 3)

3 |s reached



Bounded CTL Specs

NuSMV provides bounded CTL (or real-time CTL) operators.

= There is no state that is reachable in 3 steps where cut = 2 holds.

SPEC
'EEF 0..3 out = 3

= A state in which out = 3 is reached in 2 steps.

SPEC
LABF 0..2 out = 3

= From any reachable state, a state in which cut = 3 is reached in 3 steps.

SPEC
AG ABF 0..3 out = 3



Model-Checking
Algorithms



Model-Checking

Model Checking is a formal verification technique where...

e ..the system is represented as Finite State Machine
P

—-I_. ]_ J
1 g
:..-" 5 x_l
E._

(4—(2
i

N3
I'M.__.-""p

e __the properties are expressed as temporal logic formulae
LTL: G(p -> Fq) CTL: AG(p-> AFq)

e ...the model checking algorithm checks whether all the executions of the model
satisfy the formula.



State Space Explosion

The bottleneck:
o Exhaustive analysis may require to store all the states of the Kripke structure
e The state space may be exponential in the number of components
o State Space Explosion: too much memory required
Symbolic Model Checking:
e Symbolic representation

o Different search algorithms



Symbolic Model-Checking

Symbolic representation:
e manipulation of sets of states (rather than single states);

o sets of states represented by formulae in propositional logic;
— set cardinality not directly correlated to size

o expansion of sets of transitions (rather than single transitions);

e two main symbolic techniques:
— Binary Decision Diagrams (BDDs)
— Propositional Satisfiability Checkers (SAT solvers)

Different model checking algorithms:
e Fix-point model checking (historically, for CTL)
e Bounded Model Checking (historically, for LTL)

e Invariant Checking



CTL MC Example

Consider a simple system and a specification:

Gp AG(p -> AFq)
|dea:
e construct the set of states where the formula holds

e proceeding “bottom-up” on the structure of the formula

e q,AFq,p,p — AF q, AG(p — AF q)



CTL MC Example

AF gisthe unionofq, AXq, AXAXq, ...



CTL MC Example

P




CTL MC Example

—Q) —0)
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The set of states where the formula holds is empty!

Counterexample reconstruction is based on the intermediate sets.



Fixed Point SMC

Model Checking Algorithm for CTL formulae based on fix-point computation:

e traverse formula structure, for each subformula build set of satisfying states;
compare result with initial set of states.

e boolean connectives: apply corresponding boolean operation;

e on AX @, apply preimage computation
- ¥s'.(T(s,8") = ®(s'))
e on AF &, compute least fixpoint using

- AF® & (& v AX AF )

e on AG ¢, compute greatest fixpoint using
-~ AG® < (PANAXAGD)



Bounded MC

Key ideas:

e |00Ks for counter-example paths of increasing length &

— oriented to finding bugs

e for each k, builds a boolean formula that is satisfiable iff there is a
counter-example of length %

— can be expressed using k - |s| variables

— formula construction is not subject to state explosion

o satisfiability of the boolean formulas is checked using a SAT procedure
— can manage complex formulae on several 100K variables

— returns satisfying assignment (i.e., a counter-example)



BMC Example

Formula: G(p => Fq)

Negated Formula (violation): F(p & G ! q)

p=0 —=(1
P
No counter-example found.



BMC Example

e Formula: G(p => Fq)

e L =1 _.Flfxl.x} - ,.:
P

e No counter-example found.



BMC Example

e Formula: G(p == Fq)

e k=2 —{1,

P

e No counter-example found.

A . xl




BMC Example

e Formula: G(p => Fq)

e k=3
—-IR 1__;" ..-I'M 3 - 3
P q P

.'.--...-.- -.K'.
- 4 |
-y

O, PN - {
—1, -2 ) =3
P q P

e The 2nd trace is a counter-examplel

"l-. ) .m\\'u
a
w7



BMC

e Bounded Model Checking:
Givena FSM M = (S8,Z,T), an LTL property ¢ and a bound k > 0:

Mg ¢
e This is equivalent to the satisfiability problem on formula:

IM, &)k = Mk A [¢]

where:
— [M]}, is a k-path compatible with Z and T~

I(SD} A T(Sﬂvﬁ"l} AR -T(Ek—lsﬁk}

— [¢]x says that the k-path satisfies ¢



BMC Examples

e o0=Fp




SMC of Invariants

Checking invariant properties (e.g. AG ! bad is a reachability problem):
® s there a reachable state that is also a bad state (@)?




On the fly Checking of Invariants

Anticipate bug detection:
® at each layer, check if a new state is a bug
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Counterexamples

If a bug is found,
#® a counterexample can be reconstructed proceeding backwards




On-the-Fly Checking of Invariants

Anticipate bug detection:

e at each layer, check if a new state is a bug




Ul UIE 11y CICCKITIg O ITivarialits.
Counterexamples

If a bug Is found,

e a counterexample can be reconstructed proceeding backwards
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